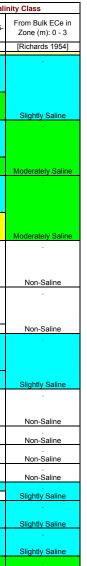
Volume 7

Appendix E


Summary of Laboratory Results

	Te	est Location			Sample Depth	pН	Chloride	Sulphate	Resistivity	Soil Condition		Sample Aggressivity Cla		Bul	lk pH			essivity Class	
st Location ID	East	North	RL	Sample ID	Relative to current level		Concentration	Concentration	By inversion of EC1:5		Aggr. to Concrete - from sample pH	Aggr. to Concrete - from Sulphate conc.	Aggr. to Steel - from sample pH	In Depth Zones (m) 0-1.5/1.5-3	In Depth Zone (m) 0 - 3	Aggr. to Concrete - from Bulk pH in Zones:	Aggr. to Concrete - from Bulk pH in Zone:	n Aggr. to Steel - from Bulk pH in Zones:	Aggr. to Steel - from Bulk pH in Zo
	(m MGA56)	(m MGA56)	(m AHD)		(m bgl)	(pH units)	(mg/kg)	(mg/kg)	Ω.cm	[AS2159-2009]		[AS2159-2009]		(pH units)	(pH units)	0-1.5/1.5-3	0 - 3	0-1.5/1.5-3	0 - 3
5	302933.3	6273992.2	20.1	5/0.0	0.0	5.8			15873	B	Non-Aggressive		Non-Aggressive						
0	002000.0	0270002.2		5/0.5	0.5	5.9			13333	B	Non-Aggressive		Non-Aggressive		•				•
				5/1.0	1.0	4.9	660	<10	2083	В	Mild	Non-Aggressive	Non-Aggressive						
				5/1.5	1.5	5.8	710	76	1754	В	Non-Aggressive	Non-Aggressive	Non-Aggressive	5.6		Non-Aggressive		Non-Aggressive	
				5/2.0	2.0	5.7			1724	В	Non-Aggressive		Non-Aggressive						
				5/2.5	2.5	6.5			1639	В	Non-Aggressive		Non-Aggressive						
			. [5/3.0	3.0	6.1			1724	В	Non-Aggressive		Non-Aggressive	6.1	5.8	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressi
13	301028.7	6275577.7	13.5	13/0.1	0.1	7.7			18519	В	Non-Aggressive		Non-Aggressive				-		
				13/0.5	0.5	6.8			8333	В	Non-Aggressive		Non-Aggressive						
				13/1.0	1.0	5.0	1300	410	1205	В	Mild	Non-Aggressive	Non-Aggressive						
				13/1.5	1.5	4.7			1143	В	Mild		Non-Aggressive	5.8		Non-Aggressive		Non-Aggressive	
			_	13/2.0	2.0	5.6			1087	В	Non-Aggressive		Non-Aggressive						
				13/2.5	2.5	5.3			1124	В	Mild		Non-Aggressive	5.5	5.5*	Mild	Mild	Non-Aggressive	Non-Aggressiv
19	302445.9	6274946.9	16.3	19/0.1	0.1	5.4			50000	В	Mild		Non-Aggressive						
				19/0.5	0.5	6.0			19608	В	Non-Aggressive		Non-Aggressive						
				19/1.0	1.0	5.5	330	350	2299	В	Mild	Non-Aggressive	Non-Aggressive						
				19/1.5	1.5	6.9	980	230	1099	В	Non-Aggressive	Non-Aggressive	Non-Aggressive	6.0		Non-Aggressive	_	Non-Aggressive	
				19/2.0	2.0	6.4			909	В	Non-Aggressive		Non-Aggressive						
				19/2.5	2.5	8.0			1000	В	Non-Aggressive		Non-Aggressive						
				19/3.0	3.0	8.3			1000	В	Non-Aggressive		Non-Aggressive	7.4	6.6	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggress
23	303134.7	6275191.7	37.1	23/0.1	0.1	6.5			17544	В	Non-Aggressive		Non-Aggressive						
				23/0.5	0.5	6.5			37037	В	Non-Aggressive		Non-Aggressive						
				23/0.7	0.7	5.0	000		8333	В	Mild		Non-Aggressive						
				23/1.0	1.0	5.1	220	62	3448	В	Mild	Non-Aggressive	Non-Aggressive		5.01				
				23/1.5	1.5 0.1	5.1			3448 7692	B	Mild		Non-Aggressive	5.6	5.6*	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggress
29	300165.3	6276206.0	18.7	29/0.1 29/0.5	0.1	7.9			23810	B	Non-Aggressive		Non-Aggressive	_	•		•		
			-	29/0.5	1.0	5.5	20	54		B	Non-Aggressive		Non-Aggressive	_					
				29/1.0	1.0	5.5	20	54	12500 18182	В	Non-Aggressive	Non-Aggressive	Non-Aggressive Non-Aggressive	6.4		Non-Aggressive		Non-Aggressive	
				29/2.0	2.0	5.4			10526	В	Mild		Non-Aggressive	5.4	5.4*	Mild	Mild	Non-Aggressive	Non-Aggress
32	. 299989.9	. 6275525.2	21.6	32/0.1	0.1	8.4			6897	B	11110		Non-Aggressive	5.4	5.4	IMILU	IVIIG	Non-Aggressive	Non-Aggress
52	299909.9	02755555.5	21.0	32/0.1	0.1	5.3			2222	B	Non-Aggressive Mild		Non-Aggressive		•		•		•
				32/1.0	1.0	4.7	830	250	1389	B	Mild	Non-Aggressive	Non-Aggressive						
			-	32/1.5	1.5	5.0	600	170	1961	B	Mild	Non-Aggressive	Non-Aggressive	5.6		Non-Aggressive		Non-Aggressive	
			-	32/2.0	2.0	5.0	000	170	1852	B	Mild	Non-Aggressive	Non-Aggressive	5.0		Non-Aggressive		Non-Aggressive	
			-	32/2.8	2.8	4.9			1818	В	Mild		Non-Aggressive	5.0	5.0*	Mild	Mild	Non-Aggressive	Non-Aggress
37	300511.6	6274879.3	28.6	37/0.1	0.1	5.9			38462	B	Non-Aggressive		Non-Aggressive	0.0				Nonviggressive	Non Aggrese
01	000011.0	0214010.0	20.0	37/0.4	0.4	5.7			24390	В	Non-Aggressive		Non-Aggressive						
				37/0.8	0.8	5.5	34	41	17241	B	Mild	Non-Aggressive	Non-Aggressive						
			. –	37/1.2	1.2	5.2	01		9091	В	Mild	non riggi coorre	Non-Aggressive	5.6	5.6*	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggress
7	300903.0	6276359.3	19.3	7/0.4	0.4	4.75			13699	В	Mild		Non-Aggressive			33.000			
				7/0.8	0.8	5			18868	В	Mild		Non-Aggressive	4.8	4.8*	Mild	Mild	Non-Aggressive	Non-Aggress
10	301149.8	6275982.2	13.0	10/0.5	0.5	6.2			25000	В	Non-Aggressive		Non-Aggressive						
			. –	10/1.5	1.5	5.9			35714	В	Non-Aggressive		Non-Aggressive	6.1	6.1*	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggress
25	303146.2	6274537.6	26.1	25/1.0	1.0	5.5			8333	В	Mild		Non-Aggressive			35		55	
				25/1.5	1.5	5			3125	В	Mild		Non-Aggressive	5.4	5.4*	Mild	Mild	Non-Aggressive	Non-Aggressi
28	299603.0	6276174.6	20.6	28/2.0	2.0	5.1			3846	В	Mild		Non-Aggressive	5.1		Mild		Non-Aggressive	
			. F	28/1.5	1.5	5.1			4762	В	Mild		Non-Aggressive	5.1	5.1*	Mild	Mild	Non-Aggressive	Non-Aggress
36	300681.0	6275389.8	25.0	36/0.5	0.5	4.9			3571	В	Mild		Non-Aggressive						
				36/1.0	1.0	4.7			2326	В	Mild		Non-Aggressive		6.5		1		Non-Aggress
			. Г	36/1.5	1.5	14.7			1639	В	Non-Aggressive		Non-Aggressive	6.5	6.5*	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggress
38	301259.2	6275147.3	15.1	38/0.3	0.3	5.9			14085	В	Non-Aggressive		Non-Aggressive						
				38/0.8	0.8	5.3			1786	В	Mild		Non-Aggressive		5.5]			Non-Aggress
			. F	38/1.5	1.5	5			1695	В	Mild		Non-Aggressive	5.5	5.5*	Mild	Mild	Non-Aggressive	Non-Aggress
39	300334.2	6274616.9	19.5	39/0.5	0.5	4.7			1754	В	Mild		Non-Aggressive						
				39/1.0	1.0	4.5			1205	В	Moderate		Non-Aggressive						
	1			39/1.5	1.5	4.3			1111	В	Moderate		Non-Aggressive	4.6	4.6*	Mild	Mild	Non-Aggressive	Non-Aggre

	T	est Location			Sample Depth	Exchangeable	Cation	Sodicity	Sodicity Class	Soil Texture Group	Textural Factor (M)	EC _{1:5}	EC _e	Sample Salinity Class	Bulk	ECe	Zone Sa	init
					Relative to current	Sodium (Na)	Exchange	[Na/CEC]		(for detailed soil logs see		[Lab.]	[M x EC _{1:5}]	(Based on sample ECe)	In Zones (m)	In Zone (m)	From Bulk ECe in	
Test Location ID	East	North	RL	Sample ID	level	Concentration	Capacity			Report Appendix)					0-1.5/1.5-3	0 - 3	Zones (m): 0-1.5/1.5	
	(m MGA56)	(m MGA56)	(m AHD)		(m bgl)	(meg/100g)	(meq/100g)	(%)	[after DLWC]	[after DLWC]	[after DLWC]	(microS/cm	(deciS/m)	[Richards 1954]	(dS/m)	(dS/m)	[Richards 1954]	┢
5	302933.3	6273992.2	20.1	5/0.0	0.0	(04 03)	(()	1	Loam	10	63	0.6	Non-Saline	<u><u> </u></u>	<u> </u>		⊨
0	002000.0	0210002.2	20.1	5/0.5	0.5					Clay loam	9	75	0.7	Non-Saline				
				5/1.0	1.0	1.3	10	12	Sodic	Light clay	8.5	480	4.1	Moderately Saline				
				5/1.5	1.5	2.6	11	23	Highly Sodic	Light medium clay	8	570	4.6	Moderately Saline	2.8		Slightly Saline	
			-	5/2.0	2.0					Light medium clay	8	580	4.6	Moderately Saline				
				5/2.5 5/3.0	2.5 3.0					Light medium clay	8	610 580	4.9	Moderately Saline	4.7	2.0	Madaastaki Oalina	
. 13	301028.7	6275577.7	13.5	13/0.1	0.1	0.16	23.5	0.01	Non-Sodic	Light medium clay Clav loam	8	580 54	4.6 0.5	Moderately Saline Non-Saline	4.7	3.6	Moderately Saline	+
15	301020.7	02/00/1.1	13.5	13/0.5	0.5	0.10	23.5	0.01	Non-Sourc	Clay loam	9	120	1.1	Non-Saline	-			
			-	13/1.0	1.0	2.6	9.4	28	Highly Sodic	Medium clay	7	830	5.8	Moderately Saline				
				13/1.5	1.5					Medium clay	7	875	6.1	Moderately Saline	3.8		Slightly Saline	
				13/2.0	2.0					Heavy clay	6	920	5.5	Moderately Saline		1		
				13/2.5	2.5					Medium clay	7	890	6.2	Moderately Saline	5.8	5.8*	Moderately Saline	1
19	302445.9	6274946.9	16.3	19/0.1	0.1			-		Loam	10	20	0.2	Non-Saline	_			
				19/0.5 19/1.0	0.5	0.35	6.7 13	5 24	Sodic	Clay loam	9	51 435	0.5	Non-Saline	_			
			-	19/1.0	1.5	3 4.75	13	24	Highly Sodic Highly Sodic	Heavy clay Heavy clay	6	435 910	2.6	Slightly Saline Moderately Saline	2.5		Slightly Saline	
			-	19/2.0	2.0	4.15	15	51		Light medium clay	8	1100	8.8	Very Saline	2.5	-		
			-	19/2.5	2.5					Light medium clay	8	1000	8.0	Moderately Saline				
				19/3.0	3.0					Light medium clay	8	1000	8.0	Moderately Saline	8.3	4.9	Very Saline	1
23	303134.7	6275191.7	37.1	23/0.1	0.1					Loam	10	57	0.6	Non-Saline				
			-	23/0.5	0.5					Loam	10	27	0.3	Non-Saline	_			
				23/0.7	0.7		0.7	10		Medium clay	7	120 290	0.8	Non-Saline	_			
			-	23/1.0 23/1.5	1.0 1.5	1	8.7	12	Sodic	Medium clay Clay loam	7	290	2.0 2.6	Slightly Saline Slightly Saline	1.3	1.3*	Non-Saline	
29	300165.3	6276206.0	18.7	29/0.1	0.1					Clay loam	9	130	1.2	Non-Saline	1.5	1.3	NOII-Saiirie	┢
25	300103.5	0210200.0	10.7	29/0.5	0.5					Medium clay	7	42	0.3	Non-Saline				
			-	29/1.0	1.0					Light clay	8.5	80	0.7	Non-Saline	-			
				29/1.5	1.5					Light clay	8.5	55	0.5	Non-Saline	0.6		Non-Saline	
				29/2.0	2.0	2	10	20	Highly Sodic	Light clay	8.5	95	0.8	Non-Saline	0.8	0.8*	Non-Saline	
32	299989.9	6275535.3	21.6	32/0.1	0.1					Light clay	8.5	145	1.2	Non-Saline	_			
			-	32/0.5 32/1.0	0.5		11	21	Ulable Oadla	Medium clay	7	450 720	3.2 5.0	Slightly Saline				
			-	32/1.0	1.5	2.9 3.4	14 12	21	Highly Sodic Highly Sodic	Medium clay Light clay	8.5	510	4.3	Moderately Saline Moderately Saline	3.7		Slightly Saline	
			-	32/1.5	2.0	5.4	12	29		Medium clav	8.5 7	540	3.8	Slightly Saline	5.7		Silghtly Saline	
				32/2.8	2.8					Medium clay	7	550	3.9	Slightly Saline	3.8	3.8	Slightly Saline	
37	300511.6	6274879.3	28.6	37/0.1	0.1	0.11	4.4	3	Non-Sodic	Clay loam	9	26	0.2	Non-Saline				
				37/0.4	0.4					Light clay	8.5	41	0.3	Non-Saline				
				37/0.8	0.8	2.2	9.7	23	Highly Sodic	Light clay	8.5	58	0.5	Non-Saline				
<u>.</u>				37/1.2	1.2					Light medium clay	8	110	0.9	Non-Saline	0.5	0.5*	Non-Saline	_
7	300903.0	6276359.3	19.3	7/0.4 7/0.8	0.4					Medium clay Light medium clay	7 8	73 53	0.5	Non-Saline Non-Saline	0.5	0.5*	Non-Saline	
. 10	301149.8	. 6275982.2	13.0	10/0.5	0.5					Light clay	8.5	40	0.4	Non-Saline	0.5	0.5	NOII-Saiirie	┢
10	001140.0	0210002.2	10.0	10/1.5	1.5					Light medium clay	8	28	0.2	Non-Saline	0.3	0.3*	Non-Saline	
25	303146.2	6274537.6	26.1	25/1.0	1.0					Medium clay	7	120	0.8	Non-Saline				t
				25/1.5	1.5					Light medium clay	8	320	2.6	Slightly Saline	1.1	1.1*	Non-Saline	
28	299603.0	6276174.6	20.6	28/2.0	2.0					Light medium clay	8	260	2.1	Slightly Saline	2.1		Slightly Saline	
				28/1.5	1.5					Light medium clay	8	210	1.7	Non-Saline	1.7	2.1*	Non-Saline	
36	300681.0	6275389.8	25.0	36/0.5	0.5		+			Medium clay	7	280	2.0	Non-Saline	4	· ·		
				36/1.0 36/1.5	1.0					Medium clay	7 8	430 610	3.0 4.9	Slightly Saline	2.8	2.9*	Slightly Saline	
38	301259.2	6275147.3	15.1	36/1.5	0.3					Light medium clay Clay loam	9	610 71	4.9	Non-Saline	2.8	2.8*	Slightly Saline	F
30	301239.2	02/014/.3	15.1	38/0.3	0.3					Medium clay	9	560	3.9	Slightly Saline	-	· ·		
	Ι.	l .		38/1.5	1.5		1			Medium clay	7	590	4.1	Moderately Saline	2.8	2.8*	Slightly Saline	
39	300334.2	6274616.9	19.5	39/0.5	0.5					Medium clay	7	570	4.0	Slightly Saline				
	1			39/1.0	1.0		1			Heavy clay	6	830	5.0	Moderately Saline	1			
	1	1	1 1	39/1.5	1.5					Medium clay	7	900	6.3	Moderately Saline	4.7	4.7*	Moderately Saline	1

Moderately Sali

Aggressivity Flags
Very Severe
Severe
Moderate
Mild
Non-Aggressive

Sodicity Flags
Highly Sodic
Sodic
Non-Sodic
Dispersion Flogs

Dispersion Flags
Complete
Some
Dispersive
No

Salinity Flags	
Highly Saline	
Very Saline	
Moderately Saline	
Slightly Saline	
Non-Saline	

Note: * indicates bulk value assumed to continue to depth at the "worst case" value of all shallow zones.

Table E2: Summary of Laboratory Results for Preliminary Contamination Investigation: Soils

Table E2:	Summary o	of Laboratory Res	ults for Prelir	ninary Conta	mination I	nvestigatio	on: Soils															-	-					
Sample	Depth	pH Electrical Conductivity	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Iron*	Manganese	Boron	Barium	Beryllium	Cobalt	Molybdenum	Selenium	Tin	Exchangeable Ca	Exchangeable K	Exchangeable Mg	Exchangeable Na	Cation Exchange Capacit	ESP	Chloride, Cl	Sulphate, SO4	Clay Content
		pH Units µS/c		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	%	mg/kg	mg/kg	%
5	0	5.8 64 5.9 75																										
5	1	4.9 48) 6	<0.4	17	8	14	<0.1	3	9	29,000	51	<3	29	<1	3	<1	<2	<1	0.6	0.1	8.5	1.3	10	12	660	<10	í
5	1.5 2	5.8 57 5.7 58																		0.4	0.2	8.2	2.6	11	23	710	76	·
5	2.5	6.5 61																										
5	3	6.1 58																										I
7	0.4	4.8 73 5 53																										I
10	0.5	6.2 40																										
10 13	1.5 0.1	5.9 28 7.7 54		<0.4	24	31	18	<0.1	27	51	51,000	700	<3	190	1	13	<1	<2	<1	15	0.2	8	0.16	24	<1			
13	0.5	6.8 12)																									
13 13	1 1.5	5 83 4.6 90		<0.4	17	9	15	<0.1	3	8	21,000	8	<3	180	<1	2	<1	<2	1	0.3	0.1	6.5	2.6	9.4	28	1300	410	·
13	2	5.6 92)																									
13 14	2.5	5.3 89 5.3 43																										·
14	2	5 1,10	0																									
19 19	0.1	5.4 20 6 51		<0.4	13	13	12	<0.1	5	12	24,000	93	<3	27	<1	4	<1	<2	<1	1.9	0.1	4.3	0.35	6.7	5			
19	1	5.6 44		<0.4	13	22	14	<0.1	11	23	22,000	390	<3	380	<1	51	<1	<2	<1	0.5	0.1	9	3	13	24	330	350	· · · · · · · · · · · · · · · · · · ·
19	1.5	6.9 91																		0.7	0.1	7.4	4.8	13	37	980	230	⊢−−−−
19 19	2 2.5	7.8 1,10 8 1,00																										I
19	3	8.3 1,00																										
23 23	0.1	6.5 58 6.5 27																										
23	0.7	5 12)																									
23 23	1 1.5	5.1 29 5.1 29		<0.4	5	19	8	<0.1	4	41	23,000	12	<3	420	<1	4	<1	<2	<1	2	0.2	5.4	1	8.7	12	220	62	·
25	1	5.5 12)																									
25 28	1.5 1	5 32 5.1 26																										·
28	1.5	5.1 21)																									
29 29	0.1	7.9 13 7.2 42																										·
29	1	5.5 80		<0.4	9	8	7	<0.1	3	5	4,700	23	<3	140	<1	1	<1	<2	<1	0.8	0.2	7.1	2	10	20	20	54	
29	1.5	5.7 55																										i
29 32	2 0.1	5.4 95 8.3 15																										I
32	0.5	5.3 45		0.4	47	7	40	.0.1	4	4	44,000	0		7	.4	4	.4	.0	.1	0.0	.0.4	10	0.0	4.4	04	000	050	ļ
32 32	1 1.5	4.7 72 5 51		<0.4	17	7	10	<0.1	1	4	41,000	2	<3	7	<1	1	<1	<2	<1	0.2 <0.1	<0.1 0.1	10 8.1	2.9 3.4	14 12	21 29	830 600	250 170	
32	2	5 54																										
32 36	2.8 0.5	4.9 55 4.9 28																										I
36	1	4.7 43)																									
36 37	1.5 0.1	4.7 63 5.9 26		<0.4	26	4	14	<0.1	5	9	55,000	45	<3	28	<1	1	<1	<2	<1	2.5	0.2	1.6	0.11	4.4	3			
37	0.4	5.7 41																										
37 37	0.8	5.5 58 5.2 11		<0.4	29	6	12	<0.1	5	6	70,000	19	<3	10	<1	1	<1	<2	<1	0.4	0.1	6.9	2.2	9.7	23	34	41	·
38	0.3	5.9 71																										
38 38	0.8	5.3 56 5 59							<u> </u>	<u> </u>						<u> </u>				<u> </u>]
39	0.5	4.7 57																										
39	1	4.5 83																										
39	1.5	4.3 90	<i>,</i>	1	1	1	1	L	1	1	L		L			I				1		1	L	1 1		L		

Table E3: Summary of Laboratory Results for Preliminary Contamination Investigation: Groundwater

						Pr	riority Heav	vy Metals	(total dis	solved)						Other Me	tals (tota	al dissolv	ved)						TRH					BTEX				PAH		c	CP			
Sample ID	Depth ^e	Date Sampled	Hardness	Applicable Soil Type ^f	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	BE	Ba B	e Ca	a Co	Fe	Mg	Mn	Мо	Se	Sn	чс ^е - О	TRH > C ₁₀ - C ₁₆ C6-C10 less RTFX	C16 C16	334	>C34-40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Naphthalene	B(а)Р Р/~\Р ТЕО	PAH	Dieldrin	Other	OPP	PCB	VOC
	m bgl		(mgCaCO3/L)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L) (µ	g/L) (µg	/L) (mg/	/L) (µg/L) (µg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L) (µ	ιg/L) (μ	ιg/L) (μ	ıg/L) (μg/	L) (µg/L) (µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L) (µ	g/L) (µg	;/L) (μg/L) (µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L
BH1	0.8	10/04/14	4,000	Clay	<1	0.3	<1	3	<1	<0.05	15	53	18 6	62 <0	.5 160	0 27	1,200	860	2,000	<1	<1	<1 ·	<10 <	<50 <	<10 <50) <100) <100	<1	<1	<1	<2	<1	<1	<1 <	5 <1	<0.001	<0.001	<0.010	<0.01	<10/<
BH2	1.3	10/04/14	3,800	Clay	<1	0.6	<1	2	<1	<0.05	39	36	20 9	96 <0	.5 170	0 120	16	820	6,900	<1	1	<1 ·	<10 <	<50 <	<10 <50) <100) <100	<1	<1	<1	<2	<1	<1	<1 <	5 <1	<0.001	<0.001	<0.010	-	-
BH3	.8	10/04/14	2,600	Clay	<1	0.3	<1	3	2	< 0.05	67	110	24 1	10 <0	.5 69	150	10	600	9,400	<1	2	<1 ·	<10 <	<50 <	<10 <50) <100	<100	<1	<1	<1	<2	<1	<1	<1 <	5 <1	0.003	<0.001	<0.010	-	-
BH4	2.2	10/04/14	600	Clay	<1	<0.1	<1	2	<1	< 0.05	2			66 <0			14		200	3	<1	<1 ·	<10 <	<50 <	<10 <50				<1	<1	<2	<1	<1	<1 <	5 <1	0.002	<0.001	<0.010	-	-
BH5	1.8	10/04/14	2,200	Clay	<1	0.3	<1	1	<1	< 0.05	15			44 <0					4,500	<1	<1	<1 ·	<10 <	<50 <	<10 <50) <100	<100	<1	<1	<1	<2	<1	<1		5 <1	0.005	<0.001	<0.010	-	-
BD1A/10414	1.8	10/04/14	-	Clay	<1	0.3	<1	<1	<1	<0.05	14	32	25 4	46 <0	.5 -	65	<10	-	4,400	<1	<1	<1	-	-		-	-	-	-	-	-	-	<1	<1 <	5 <1	-	-	-	-	-
roundwater Ass	sessment C	riteria																																						
GIL (freshwater)			-	-	24/ 13 ^g	0.2	1 ^d	1.4	3.4	0.06	11	8	370		-	-	-	-	1,900	-	5	-	-	-		-	-	950	-	-	200 ^h	350	16			-	-	-		-
IL (freshwater, ha	rdness adju	isted) ^b	3,150	-	-	12.6	150 ^m	73	1254	-	575	418	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-
IL (freshwater, ha	rdness adju	isted) ^b	600	-	-	2.9	39 ^m	18	153	-	140	102	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-
SLs (Residential)			-	-																																				
HSL-A&B	2-<4m		-	Clay	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	NL NL	-	-	5,000	NL	NL	NL	-	NL			-	-	-	-	-
HSL-A&B	4-<8m		-	Clay	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	NL NL	-	-	5,000	NL	NL	NL	-	NL			-	-	-	-	-
HSL-A&B	8+m		-	Clay	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	NL NL	-	-	5,000	NL	NL	NL	-	NL			-	-	-	-	-
ADWG	(health-bas	ed)	-	-	10	2	50 ^d	2,000	10	1	20	-	4,000 2,	000 60) -	-	-	-	500	50	10	-	-	-		-	-	1	800	300	6	00	- (.01		0.3	-	-	-	-
	(aesthetic-b	oased)	-	-	-	-	-	1,000	-	-	-	3,000	-		-	-	300	-	100	-	-	-	-	-		-	-	-	25	3	2	0	-			-	-	-	-	-
Reference Level		·	-	· .	-	-	-	-	-	-	-	-	-		-	-	-	-	-				-	- 1	50 ^j 600	j _	-	-	180 ^k	80 ^k	75 ^{k,i}	-	- (1 ^k		-			-	-
																									000			1	100	00	,5						1		1	

Notes:

а Replicate sample of sample listed directly above

Adjusted in accordance with ANZECC (2000) for a hardness of 895.5mg/L, average of hardness in primary samples b

Dutch Soil Remediation Circular 2009 (ENGELSE versie circulaire Bodemsanering 2009): Indicative level for serious contamination С

d Threshold value for Cr (VI)

е Depth to groundwater as measured immediately prior to sampling on 3 Jul 2013

Overlying material applying for HSL. Soil type adopted on conservative basis f

24µg/L as As(III) 13µg/L as As(V) g

h As p-xylene

As m-xylene i

Airport (Environment Protection) Regulations (1997), Schedule 2 Water Pollution Accepted Limits: Table 1.03 - Accepted limits of contamination j

ANZECC Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000), Low reliability values k

m Threshold value for Cr (III)

Not defined/ not analysed/ not applicable

BOLD Concentration detected at or above the PQL

Shaded Concentration above investigation level

Acronyms

As Arsenic

В Boron

- Ва Barium BaP
- benzo(a)pyrene Be Beryllium
- BTEX benzene, toluene, ethyl benzene, total xylenes
- Ca Calcium Cd Cadmium
- Co Cobalt
- Cr Chromium
- Cu Copper
- Fe Iron
- Hg Mercury
- Mg Magnesium
- Mn Manganese
- Мо Molybdenum
- Ni Nickel

NL "Not limiting" to human health for the proposed land use for vapour intrusion from petroleum hydrocarbons

- PAH polycyclic aromatic hydrocarbons
- Pb Lead
- PQL practical quantitation limit
- Se Selenium
- Sn Tin
- TRH total recoverable hydrocarbons, including total petroleum hydrocarbons (TPH)
- Zn Zinc

Appendix F

Laboratory Reports

Results of Moisture Content, Plasticity and Linear Shrinkage Tests

Client: Project:		Donald Australia Pty Ltd		Projec Repor Repor			73895 4 08/05/2	014
Location:		est Growth Centre			ample of Test:		1-4/04/2 10/04/2 1 of 1	
Test Location	Depth (m)	Description	Code	W _F %	WL %	W _P %	PI %	*LS %
TP11	0.1	Brown clayey silt	2,5	15.2	30	17	13	8.5
TP11	0.5-1.0	Yellow brown silty clay	2,5	14.3	44	15	28	14
TP11	2.0	Dark grey mottled red silty clay	2,5	26.9	72	21	51	21 CU
TP17	0.5-1.0	Red brown silty clay	2,5	19.8	34	16	18	9.5
TP31	0.5-1.0	Red brown grey silty clay	2,5	23.1	46	19	27	14.5
TP40	0.3	Grey orange brown silty clay	2,5	24.0	53	18	35	17.5 CU

Legend:

W_F Field Moisture Content

W_L Liquid limit

W_P Plastic limit

- PI Plasticity index
- LS Linear shrinkage from liquid limit condition (Mould length125mm)

Test Methods:

Moisture Content:	AS 1289 2.1.1
Liquid Limit:	AS 1289 3.1.2
Plastic Limit:	AS 1289 3.2.1
Plasticity Index:	AS 1289 3.3.1
Linear Shrinkage:	AS 1289 3.4.1

Code:

Sample history for plasticity tests

1. Air dried

2. Low temperature (<50°C) oven dried

3. Oven (105°C) dried

4. Unknown

Method of preparation for plasticity tests

- 5. Dry sieved
- 6. Wet sieved
- 7. Natural

*Specify if sample crumbled CR or curled CU

Sampling Methods: Sampled by Engineering Department

Remarks: Location of TP11, TP17, TP31, TP40: Vineyard Precinct

TECHNICAL COMPETENCE

A NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Tested: LW Checked: BH

Brett Hughes Laboratory Manager

Results of Moisture Content, Plasticity and Linear Shrinkage Tests

Client:	Mott MacDonald Australia Pty Ltd	Project No: Report No:	73895 14
Project:	Land Capability Investigation	Report Date:	08/05/2014
		Date Sampled:	1-4/04/2014
Location:	North West Growth Centre	Date of Test: Page:	30/04/2014 1 of 1

Test Location	Depth (m)	Description	Code	W _F %	WL %	W _P %	PI %	*LS %
Vineyard Precinct TP22	0.3-0.45	Red brown silty clay	2,5	-	70	22	48	14.5 CU

FORM NO R002 REV 10 APRIL 2013

Legend:

W_F Field Moisture Content

W_L Liquid limit

W_P Plastic limit

PI Plasticity index

LS Linear shrinkage from liquid limit condition (Mould length125mm)

Test Methods:

AS 1289 2.1.1
AS 1289 3.1.2
AS 1289 3.2.1
AS 1289 3.3.1
AS 1289 3.4.1

Sampling Methods: Sampled by Engineering Department

Remarks:

ITED FOR

TECHNICAL COMPETENCE

NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Tested: LW Checked: BH

Code:

Sample history for plasticity tests

1. Air dried

2. Low temperature (<50°C) oven dried

- 3. Oven (105°C) dried
- 4. Unknown

Method of preparation for plasticity tests

- 5. Dry sieved
- 6. Wet sieved
- 7. Natural

*Specify if sample crumbled CR or curled CU

Brett Hughes Laboratory Manager

are 7025

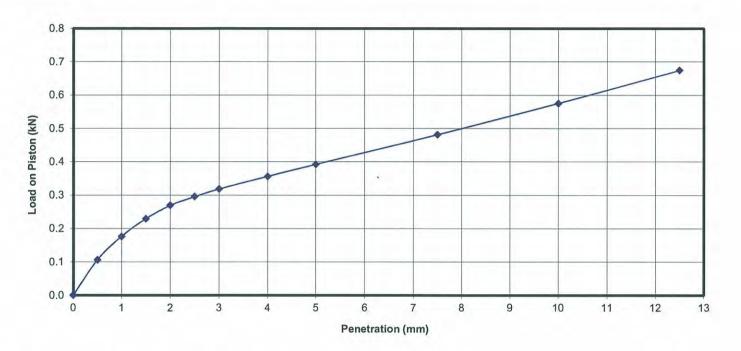
Determination of Emerson Class Number of Soil

Mott MacDon	ald Australia Pty Ltd	Project No. :	73895	
Land Capabil	ity Investigation	Report No. : Report Date :	5 8/05/2014	
North West G	rowth Centre	Date of Test: Page:	15/04/2014 1 of 1	
Depth (m)	Description	Water Type	Water Temp	Class No.
0.1	Brown Clayey Silt	Distilled	22	3
0.5	Yellow brown silty clay	Distilled	22	2
2.0	Dark grey mott red silty clay	Distilled	22	6
0.5	Red brown silty clay	Distilled	22	2
0.5	Red brown grey silty clay	Distilled	22	3
0.3	Grey orange brown silty clay	Distilled	22	3
	Land Capabili North West G Depth (m) 0.1 0.5 2.0 0.5 0.5	0.1Brown Clayey Silt0.5Yellow brown silty clay2.0Dark grey mott red silty clay0.5Red brown silty clay0.5Red brown grey silty clay	Land Capability InvestigationReport No. : Report Date : Date of Test: Page:North West Growth CentreDate of Test: Page:Depth (m)DescriptionWater Type0.1Brown Clayey SiltDistilled0.5Yellow brown silty clayDistilled2.0Dark grey mott red silty clayDistilled0.5Red brown silty clayDistilled0.5Red brown grey silty clayDistilled	Land Capability InvestigationReport No. : 5 Report Date : 8/05/2014North West Growth CentreDate of Test: 15/04/2014 Page: 1 of 1Depth (m)DescriptionWater Type0.1Brown Clayey SiltDistilled0.5Yellow brown silty clayDistilled2.0Dark grey mott red silty clayDistilled0.5Red brown silty clayDistilled0.5Red brown grey silty clayDistilled22D.5Red brown grey silty clayDistilled

Test Methods:AS 1289 3.8.1Sampling Methods:Sampled by Engineering Department

Remarks:

NATA Accredited Laboratory Number: 828 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

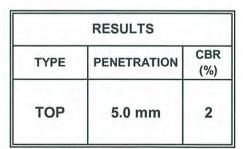

An

Brett Hughes Laboratory Manager

Results of California Bearing Ratio Test

Client :	Mott MacDonald Australia Pty Ltd	Project No. :	73895.00
		Report No. :	1
Project :	Land Capability Investigation	Report Date :	8/05/2014
		Date Sampled :	1/04/2014
Location :	North West Growth Centre	Date of Test:	12/04/2014
Test Location :	Vineyard Precinct TP11		
Depth / Layer :	0.5 - 1.0m	Page:	1 of 1

Description: Test Method(s):


Yellow brown silty clay AS1289 6.1.1, AS1289 5.1.1, AS1289 2.1.1

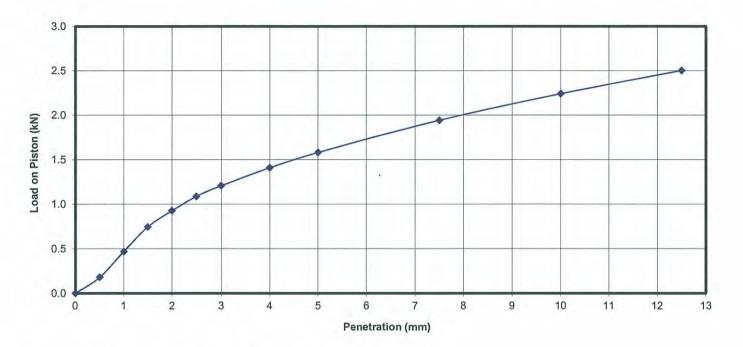
Sampling Method(s): Sampled by Engineering Department

Percentage > 19mm: 0% Excluded

LEVEL OF COMPACTION: 98% of STD MDD MOISTURE RATIO: 98% of STD OMC SURCHARGE: 4.5 kg SOAKING PERIOD: 4 days SWELL: 1.9%

	CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m ³
At compaction		16.1	1.78
After soaking		19.6	1.78
After test	Top 30mm of sample	24.3	-
	Remainder of sample	17.9	-
Field values	and the second se	14.2	-
Standard Com	paction	16.4	1.82

TECHNICAL


NATA Accredited Laboratory No 828 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Brett Hughes Laboratory Manager

Results of California Bearing Ratio Test

Client :	Mott MacDonald Australia Pty Ltd	Project No. :	73895.00
		Report No. :	2
Project :	Land Capability Investigation	Report Date :	8/05/2014
		Date Sampled :	1/04/2014
Location :	North West Growth Centre	Date of Test:	16/04/2014
Test Location :	Vineyard Precinct TP17		
Depth / Layer :	0.5 - 1.0m	Page:	1 of 1

Description: Red brown silty clay Test Method(s): AS1289 6.1.1, AS1289 5.1.1, AS1289 2.1.1 Sampling Method(s): Sampled by Engineering Department

Percentage > 19mm: 0%

TYPE

TOP

LEVEL OF COMPACTION: 100% of STD MDD MOISTURE RATIO: 101% of STD OMC

SURCHARGE: 4.5 kg SOAKING PERIOD: 4 days SWELL: 0.3%

RESULTS

PENETRATION

2.5 mm

	CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m ³
At compaction		15.5	1.81
After soaking	and the second	18.0	1.81
After test	Top 30mm of sample	20.6	-
	Remainder of sample	17.4	-
Field values		19.5	-
Standard Comp	paction	15.4	1.81

TECHNICAL

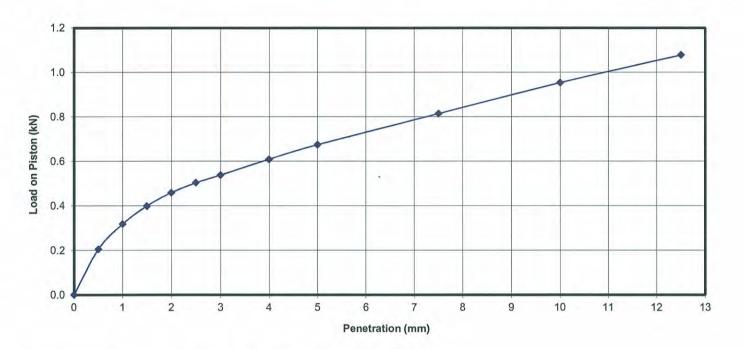
NATA Accredited Laboratory No 828 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards Accredited for compliance with ISO/IEC 17025

CBR

(%)

9

Brett Hughes Laboratory Manager


FORM R019 REV 8 JULY 2013

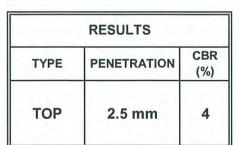
Douglas Partners Pty Ltd ABN 75 053 980 117 ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114Phone (02) 9809 0666 Fax (02) 9809 4095

Results of California Bearing Ratio Test

Client :	Mott MacDonald Australia Pty Ltd	Project No. :	73895.00
		Report No. :	3
Project :	Land Capability Investigation	Report Date :	8/05/2014
		Date Sampled :	1/04/2014
Location :	North West Growth Centre	Date of Test:	16/04/2014
Test Location :	Vineyard Precinct TP31		
Depth / Layer :	0.5 - 1.0m	Page:	1 of 1

Description: Red brown grey silty clay

Test Method(s): AS1289 6.1.1, AS1289 5.1.1, AS1289 2.1.1


Sampling Method(s): Sampled by Engineering Department

Percentage > 19mm: 0%

LEVEL OF COMPACTION: 101% of STD MDD MOISTURE RATIO: 97% of STD OMC

SURCHARGE: 4.5 kg SOAKING PERIOD: 4 days SWELL: 1.5%

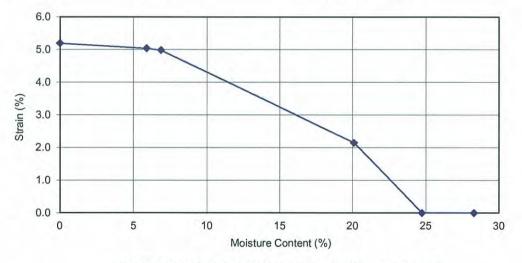
	CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m ³
At compaction		21.0	1.70
After soaking		23.6	1.70
After test	Top 30mm of sample	27.4	
	Remainder of sample	22.0	
Field values		23.9	-
Standard Com	paction	21.7	1.68

TECHNICAL

Accredited for compliance with ISO/IEC 17025

Brett Hughes Laboratory Manager

FORM R019 REV 8 JULY 2013



Result of Shrink-Swell Index Determination

Client :	Mott MacDonald Australia Pty Ltd	Project No. :	73895.00
		Report No. :	11
Project :	Land Capability Investigation	Report Date :	8/05/2014
		Date Sampled :	4/04/2014
Location :	North West Growth Centre	Date of Test:	23/04/2014
Test Location :	Vineyard Precinct TP31		
Depth / Layer :	0.4m	Page:	1 of 1

CORE SHRINKAGE TEST

Shrinkage - air dried	5.0 %	Pocket penetrometer reading at initial moisture content	250 kPa
Shrinkage - oven dried	5.2 %		
		Pocket penetrometer reading	200 kPa
Significant inert inclusions	3.0 %	at final moisture content	
			and the second
Extent of cracking	SC	Initial Moisture Content	23.1 %
Extent of soil crumbling	0.0 %	Final Moisture Content	28.3 %
Extent of soli crumbling	0.0 %	Final Moisture Content	20.3 %
Moisture content of core	24.7 %	Swell under 25kPa	0.0 %

SHRINK-SWELL INDEX Iss 2.9% per ∆ pF

Description: Test Method(s): Sampling Method(s): Extent of Cracking:

Remarks:

NATA

TECHNICAL

Red brown grey silty clay AS 1289.7.1.1, AS 1289.2.1.1 Sampled by Sydney Engineering Department

UC - Uncracked SC - Slightly cracked MC - Moderately cracked HC - Highly cracked FR - Fractured

SWELL TEST

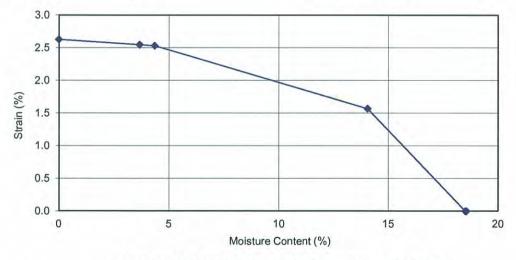
Meimann

Norman Weimann Senior Soil Technician

Note that NATA accreditation does not cover the performance of pocket penetrometer readings

> NATA Accredited Laboratory Number: 828 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Tested:	LW	
Checked:	вн	



Result of Shrink-Swell Index Determination

Client :	Mott MacDonald Australia Pty Ltd	Project No. :	73895.00
		Report No. :	12
Project :	Land Capability Investigation	Report Date :	8/05/2014
		Date Sampled :	4/04/2014
Location :	North West Growth Centre	Date of Test:	23/04/2014
Test Location :	Vineyard Precinct TP10		
Depth / Layer :	0.4m	Page:	1 of 1

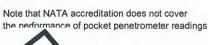
CORE SHRINKAGE TEST

Shrinkage - air dried	2.5 %	Pocket penetrometer reading at initial moisture content	300 kPa
Shrinkage - oven dried	2.6 %		
		Pocket penetrometer reading	240 kPa
Significant inert inclusions	3.0 %	at final moisture content	
	00	Initial Maintena Contant	150.00
Extent of cracking	SC	Initial Moisture Content	15.6 %
Extent of soil crumbling	0.0 %	Final Moisture Content	18.6 %
Moisture content of core	18.5 %	Swell under 25kPa	0.0 %

SHRINK-SWELL INDEX Iss 1.5% per ∆ pF

Description: Test Method(s): Sampling Method(s): Extent of Cracking:

Orange Red brown clay AS 1289.7.1.1, AS 1289.2.1.1 Sampled by Sydney Engineering Department


UC - Uncracked SC - Slightly cracked MC - Moderately cracked HC - Highly cracked FR - Fractured

SWELL TEST

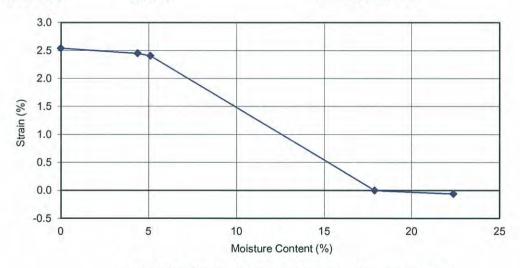
Meinam

Norman Weimann Senior Soil Technician

FORM R013 REV 3 APRIL 2013

ACCREDITED FOR TECHNICAL COMPETENCE

NATA Accredited Laboratory Number: 828 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025


Tested:	LW	
Checked:	BH	

Result of Shrink-Swell Index Determination

Client :	Mott MacDonald Australia Pty I	.td Project No. :	73895.00
		Report No. :	13
Project :	Land Capability Investigation	Report Date :	8/05/2014
		Date Sampled :	4/04/2014
Location :	North West Growth Centre	Date of Test:	23/04/2014
Test Location :	Vineyard Precinct TP17		
Depth / Layer :	0.4m	Page:	1 of 1
CORE SHRINKA	<u>GE TEST</u>	SWELL TEST	
Shrinkage - air dried	2.4 %	Pocket penetrometer reading at initial moisture content	>400 kPa

Shrinkage - oven dried	2.5 %		
Significant inert inclusions	2.0 %	Pocket penetrometer reading at final moisture content	320 kPa
Extent of cracking	SC	Initial Moisture Content	17.2 %
Extent of soil crumbling	0.0 %	Final Moisture Content	22.4 %
Moisture content of core	17.9 %	Swell under 25kPa	0.1 %

SHRINK-SWELL INDEX Iss 1.4% per ∆ pF

Description: Test Method(s): Sampling Method(s): Extent of Cracking:

Red brown grey silty clay AS 1289.7.1.1, AS 1289.2.1.1 Sampled by Sydney Engineering Department

UC - Uncracked SC - Slightly cracked MC - Moderately cracked HC - Highly cracked FR - Fractured

Meimann

Norman Weimann Senior Soil Technician

FORM R013 REV 3 APRIL 2013

Note that NATA accreditation does not cover the performance of pocket penetrometer readings

ACCREDITED FOR TECHNICAL COMPETENCE

NATA Accredited Laboratory Number: 828 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Tested:	LW	1
Checked:	вн	

	NLE. 73895 41	NLE	d. Sampler: NLE Mob. Phone: 0414 76 <u>Jglaspartners.com.au</u> . Lab	r:N none: thers.o	_E	769 011 <u>u</u> b Quote No.	9		To: Attn: Phor	Envirc 12 As Tania 1e: (02) Email.	To: Envirolab Services 12 Ashley St Chatswood 2067 Attn: Tania Notaras Phone: (02) 9910 6200 Fax: (02) 9910 6201 Email: tnotaras@envirolabservices.com.au	rvices Chatsv is 200 as@en	vood 2 Fax: (067 02) 991 servic	/ood 2067 Fax: (02) 9910 6201 virolabservices.com	au
		Sample Type	Container type						Analytes	tes						Notes/preservation
Sample D D Sampling	Date	S - soil W – Water	G – glass	Hq	EC 1:5	ESP (incl. CEC)	CI & SO4	8MH	Pb Hg Vi	ХЭТ8 \НЯТ НАЧ \З8ТМ	(Trace level) OCP/OPP	(Trace level) PCB	NOC	Hardness	Clay Content	
10.0 i				7	1											
10.5 2					-											
11.0 3																
1.5 4																
12.0 5											2	6	Enviro	Envirolab Services	ces	
512.5 6											EIIV	ROLAB	Chatswoo	d NSW 2	r St 067	
13.0 4					-						dol	No:	040	96.00	200	
13/0-1 8											Date	e Received	7.7	11.		
13/0.5 9											Rec	le Receive	11 0	00		
3/1.0 10											Ten	rip. Cool/Anbiedt	depack			
3/15 11											Sec		Jrity: maat/Broken/None	None		
13/2-0 12															4	
13/25 3				A.	V											
	1		:	(Phone:		(02) 4271 1836	1836		
		Address: 9	6 Hermita	ge Koa	d West	96 Hermitage Koad West Kyde NSW 2114	2114					Fax:	(02) 42	(02) 42/1 189/		
Relinquished by: Wry	1	Signed:	Signed:	and a	0	0	Date &	Time:	Date & Time: 0 1.04.14		Transported to laboratory by: Hunter Express	rted to li	aboratc	ry by: H	Hunter E	xpress

Form COC

Page L of S

CO Douglas Partners Geotechnics - Environment - Groundwater

CHAIN OF CUSTODY

ä	Notes/preservation																	xpress		
Envirolab Services 12 Ashley St Chatswood 2067 Tania Notaras e: (02) 9910 6200 Fax: (02) 9910 6201 Email: tnotaras@envirolabservices.com.au		Clay content																03.04-14 Transported to laboratory by: Hunter Express		
2067 02) 99 [.] 02rvic		Hardness														1836	(02) 4271 1897	ry by: H		
vood 2 Fax: (virolat		NOC														(02) 4271 1836	(02) 42	aborato		
vices Chatsv s :00 as@en		(Trace level) PCB														1.5	Fax:	ted to la		
Envirolab Services 12 Ashley St Chatswood 2067 Tania Notaras e: (02) 9910 6200 Fax: (02) 9 Email: tnotaras@envirolabsen		(Trace level) (CCP/OPP														Phone:	ш	ransport		
To: Envirolab Servic 12 Ashley St Ch Attn: Tania Notaras Phone: (02) 9910 6200 Email: tnotaras(tes	XЭТ8 \HЯT HA9 \Э8TM																T 21.		
To: Attn: Phon	Analytes	Pb Hg Ni Pb Hg Ni																10.50		
		8MH																Time:		
No		²OS & IO															12114	Date & T		
d Sampler: NLE Mob. Phone: 0414 769 011 <u>Iglaspartners.com.au</u> Lab Quote No.		ESP (incl.			1												Ryde NSM		#	
LE 0414 76: <u>com.au</u> . Lab		EC 1:5	>	-											2		d West			Jul.
r:N none: u		Hq	7	-	-										1		ge Roa	2	3	トリート
	Container type	G - glass P - glastic															96 Hermitage Road West Ryde NSW 2114	Signed:	Time:	
store/Vineyar 895.4.1 edwards@dou ESdat Format.	Sample Type	S - soil W - water															Address:		Date & Time:	
Werstone Vin .73895.4.1 ee.edwards 0; ESdat Foi	f	Sampling Date																	S	
NLE7		Lab ID	t	15	16	¢	18	iq	20	21	22	23	24	25	26		Douglas Partners	WEN	D. toral	
Project Name: Project No: Project Mgr: Email: Date Required:		Sample ID	1.0/61	19/0.5	10/1-0	19/1.5	19/2.0	19/2.5	19/3-0	23/0.1	23/0.5	23/0.7	23/1.0	23/1.5	201/0.1		Send Results to: Do	by:	Received By: D	

Form COC

Page 2 of 3

Douglas Partners Godechnics - Environment - Groundwater

~	1
6	
2	1
K	1
U.	
1	
C	
Ц	
C	
>	
E	
4	
1	
0	1

Project Name: Project No: Project Mgr: Email: Date Required:			Riverstone/Nineyard	ard	hone: hone:	LE	E	<u>ę</u>		To: Attn: Phor	To: Envirolab Servic 12 Ashley St Ch Attn: Tania Notaras Phone: (02) 9910 6200 Email: tnotaras(Envirolab Services 12 Ashley St Chatswood 2067 Tania Notaras e: (02) 9910 6200 Fax: (02) 9 Email: tnotaras@envirolabsen	rvices Chatsv is 200 as@en	vood 2 Fax: ((virolab	:067 32) 991 servic	Envirolab Services 12 Ashley St Chatswood 2067 Tania Notaras e: (02) 9910 6200 Fax: (02) 9910 6201 Email: tnotaras@envirolabservices.com.au	au
		1	Sample Type	Container type						Analytes	rtes						Notes/preservation
Sample ID	Lab	Sampling Date	S - soil W – water	G – glassic P - glastic	Hq	EC 1:5	ESP (incl.	¢OS & IO	8MH	Pb Hg Vi	XATA \HAT MA9 \38TM	(Trace level)	(Trace level) PCB	NOC	Hardness	Clay content	
20/0.5	22				2)											
29/1-0	52				-	_											
29/1.5	29																
29/2.0	30																
1-0/28	31																
32/0.5	32																
32/1.0	33																
32/1-5	34																
32/2.0	35																
32/2.8	36																
37/0.1	37																
3710.4	38																
37/0-8	39						1										
Lab Report No. 1.2. 40 Send Results to: Douglas Partners	uglas Pé	i	 Address:	96 Hermits	y ge Roa	d West	 Address: 96 Hermitage Road West Ryde NSW 2114	2114				Phone: Fax:	(02	(02) 4271 1836 (02) 4271 1836 (02) 4271 1897	1836		
Relinquished by:	why		Sig	Signed:	5	1	D	Date & Time:		03-04-14		ranspor	ted to la	borato	y by: F	Transported to laboratory by: Hunter Express	xpress
Received By: D	(may C	EUS	Date &	Date & Time: o	TA RO	+											

Form COC

Page 3 of 3

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

107696

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Nerilee Edwards

Sample log in details:

Your Reference:	73895-1, Vine	yard	
No. of samples:	40 Soils		
Date samples received / completed instructions received	4/4/2014	/	4/4/2014

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 11/04/14
 / 11/04/14

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

Miscellaneous Inorg - soil						
Our Reference:	UNITS	107696-1	107696-2	107696-3	107696-4	107696-5
Your Reference		5	5	5	5	5
Depth		0.0	0.5	1.0	1.5	2.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
Date analysed	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
pH 1:5 soil:water	pH Units	5.8	5.9	4.9	5.8	5.7
Electrical Conductivity 1:5 soil:water	µS/cm	64	75	480	570	580

Miscellaneous Inorg - soil						
Our Reference:	UNITS	107696-6	107696-7	107696-8	107696-9	107696-10
Your Reference		5	5	13	13	13
Depth		2.5	3.0	0.1	0.5	1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
Date analysed	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
Date analysed pH 1:5 soil:water	- pHUnits	09/04/2014 6.5	09/04/2014 6.1	09/04/2014 7.7	09/04/2014 6.8	09/04/2014 5.0

Miscellaneous Inorg - soil						
Our Reference:	UNITS	107696-11	107696-12	107696-13	107696-14	107696-15
Your Reference		13	13	13	19	19
Depth		1.5	2.0	2.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
Date analysed	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
pH 1:5 soil:water	pH Units	4.6	5.6	5.3	5.4	6.0
Electrical Conductivity 1:5 soil:water	µS/cm	900	920	890	20	51

Miscellaneous Inorg - soil						
Our Reference:	UNITS	107696-16	107696-17	107696-18	107696-19	107696-20
Your Reference		19	19	19	19	19
Depth		1.0	1.5	2.0	2.5	3.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
Date analysed	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
pH 1:5 soil:water	pH Units	5.6	6.9	7.8	8.0	8.3
Electrical Conductivity 1:5 soil:water	µS/cm	440	910	1,100	1,000	1,000

Miscellaneous Inorg - soil						
Our Reference:	UNITS	107696-21	107696-22	107696-23	107696-24	107696-25
Your Reference		23	23	23	23	23
Depth		0.1	0.5	0.7	1.0	1.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
Date analysed	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
pH 1:5 soil:water	pH Units	6.5	6.5	5.0	5.1	5.1
Electrical Conductivity 1:5 soil:water	μS/cm	58	27	120	290	290

Miscellaneous Inorg - soil						
Our Reference:	UNITS	107696-26	107696-27	107696-28	107696-29	107696-30
Your Reference		29	29	29	29	29
Depth		0.1	0.5	1.0	1.5	2.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
Date analysed	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
pH 1:5 soil:water	pH Units	7.9	7.2	5.5	5.7	5.4
Electrical Conductivity 1:5 soil:water	µS/cm	130	42	80	55	95

Miscellaneous Inorg - soil						
Our Reference:	UNITS	107696-31	107696-32	107696-33	107696-34	107696-35
Your Reference		32	32	32	32	32
Depth		0.1	0.5	1.0	1.5	2.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
Date prepared Date analysed	-	09/04/2014 09/04/2014	09/04/2014 09/04/2014	09/04/2014 09/04/2014	09/04/2014 09/04/2014	09/04/2014 09/04/2014

Miscellaneous Inorg - soil						
Our Reference:	UNITS	107696-36	107696-37	107696-38	107696-39	107696-40
Your Reference		32	37	37	37	37
Depth		2.8	0.1	0.4	0.8	1.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
Date analysed	-	09/04/2014	09/04/2014	09/04/2014	09/04/2014	09/04/2014
Date analysed pH 1:5 soil:water	- pHUnits	09/04/2014 4.9	09/04/2014 5.9	09/04/2014 5.7	09/04/2014 5.5	09/04/2014 5.2

MethodID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons.

Client Reference:

73895-1, Vineyard

			ent Referenc	e. /:	8895-1, viney	aru			
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Dup	plicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Bas	se II Duplicate II %RPD		
Date prepared	-			09/04/2 014	107696-1	09	9/04/2014 09/04/2014	LCS-1	09/04/201
Date analysed	-			09/04/2 014	107696-1	09	9/04/2014 09/04/2014	LCS-1	09/04/201
pH 1:5 soil:water	pHUnits		Inorg-001	[NT]	107696-1		5.8 5.8 RPD:0	LCS-1	101%
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	107696-1		64 62 RPD:3	LCS-1	102%
QUALITYCONTROL	UNITS	5	Dup.Sm#		Duplicate		Spike Sm#	Spike % Reco	overy
Miscellaneous Inorg - soil				Base + I	Duplicate + %RF	D			
Date prepared	-	1	07696-11	09/04/2	014 09/04/201	4	LCS-2	09/04/201	4
Date analysed	-	1	07696-11	09/04/2	2014 09/04/201	4	LCS-2	09/04/201	4
pH 1:5 soil:water	pHUn	its 1	07696-11	4.6	4.7 RPD:2		LCS-2	101%	
Electrical Conductivity 1:5 soil:water	µS/cr	n 1	07696-11	900	850 RPD:6		LCS-2	103%	
QUALITYCONTROL	UNIT	S	Dup.Sm#		Duplicate				
Miscellaneous Inorg - soil				Base + I	Duplicate+%RF	D			
Date prepared	-	1	07696-21	09/04/2	014 09/04/201	4			
Date analysed	-	1	07696-21	09/04/2	014 09/04/201	4			
pH 1:5 soil:water	pHUn	its 1	07696-21	6.5	6.5 RPD:0				
Electrical Conductivity 1:5 soil:water	µS/cr	n 1	07696-21	58	56 RPD:4				
QUALITYCONTROL	UNITS	3	Dup.Sm#		Duplicate				
Miscellaneous Inorg - soil				Base + I	Duplicate + %RF	D	4		
Date prepared	-	1	07696-31	09/04/2	014 09/04/201	4	1		
Date analysed	-	1	07696-31	09/04/2	014 09/04/201	4			
pH 1:5 soil:water	pHUn	its 1	07696-31	8.3	8.4 RPD:1				
Electrical Conductivity 1:5 soil:water	µS/cr	n 1	07696-31	150	140 RPD:7				

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114 ph: 02 9809 0666 Fax: 02 9809 4095

Attention: Nerilee Edwards

Sample log in details:	
Your reference:	73895-1, Vineyard
Envirolab Reference:	107696
Date received:	4/4/2014
Date results expected to be reported:	11/04/14

Samples received in appropriate condition for analysis:	YES
No. of samples provided	40 Soils
Turnaround time requested:	Standard
Temperature on receipt (°C)	21.6
Cooling Method:	None
Sampling Date Provided:	YES

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

<u>Contact details:</u> Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1

'S ler	
Dauglas Partmers ctechnics - Environtrient - Groundwater	and of the second s

CHAIN OF CUSTODY

Sampling Date S - soil A S - S - S - S - S - S - S - S - S - S -
rs Address: S &\Date

Form COC

Page f of S

Project Name: Project No: Project Mgr: Email: Date Required:			Riverstone/Nineyard 73895.4.4. Sampler. N NLE Mob. Phone: nerilee.edwards@douglaspartners. STD, ESdat Format.	ard Sampl Mob. I <u>Duglaspe</u>	d Sampler: <u>M#</u> E Mob. Phone: 041 Iglaspartners.con	. <u></u>	#€ 0414 769 011. <u>com.au</u> Lab Quote No.	No.		To: Attn: Phone	To: Envirolab Servic 12 Ashley St Ch Attn: Tania Notaras Phone: (02) 9910 6200 Email: tn9taras(Envirolab Services 12 Ashley St Chats Tania Notaras 2: (02) 9910 6200 Email: thotaras@e	es atsv	rood 20 Fax: (C	vood 2067 Fax: (02) 9910 6201 Virolabservices.com	6201 S.COM.2	=
		f	Sample Type	Container						Analytes	tes						Notes/preservation
Sample ID	de O	gniiqme2 DateD	lioz - S nalaw - W	2 - glass D - plastic	Hq	EC 1:5	CEC) ESP (incl.	208 & IO	8MH	Pb Hg Ni Pb Hg Ni	XƏT8 (HAT HA9 (Ə8TM	(Trace level) OCP/OPP	(Trace level) PCB	NOC	Rardness	Clay content	
4 (c 1					1												
1/2 5	5						>		>								
2.8 T 4.5							>	7	>								
13/115							5	7									
- * - Ta -	27				*********							and the second			•		
1 2 AV						1 (Comme										-	
1 C1/12 -	- A g															-	
Dele L															1		
7386 4	23				in a manne												
100	2				and an out our												ine en este contractores entre l'ada y este entre ent
21152	1						>	2	>								
- 3/1 5																	
2 - 1 / m	20			(1104-1499)) 5.7		2										+	and a second
Lab Report No. Send Results to: D	Douglas Partners	artners	Address:	96 Hermi	tage Ro	ad Wes	96 Hermitage Road West Rvde NSW 2114	W 2114				Phone:	(02)	(02) 4271 1836 (02) 4271 1836	836	-	
Relinquished by:	11-1-1		Si	Signed:	14	1		1	Time:	1.1 6.1	100	ranspoi	tot	borator	v hv H	inter Evr	ITORO
Received By-	the standard				and a							2			1 - 1 - 1		000

Ferm COC

Page Z of 2

Image: Construction of the co								An other states and stat						and a sub-contract of the particular second				
Contains Contains Analysis Contains 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1007 1006 1006 1006 1006 1007 1006 1006 1006 1006 1007 1006 1006 1006 1006 1007 1006 1006 1006 1006 1007 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1007 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1007	Project Name: Project No: Project Mgr: Email: Date Required:	NLI NLI	Riverstor 73895. E. ilee.edw D, ESd	Nineya <u>ards@dc</u> at Forma	ard Sample Mob. F <u>Juglaspa</u> tt	erK hone. rtners.	0414 com.a	769 011. <u>u</u> ib Quote	No		To: Attn: Phor	Envirc 12 As Tania Te: (02) Email:	blab Se hley St Notara 9910 6: thotar	rvices Chatsv as 200 as@env	vood 2 Fax: (i virolab	.067 32) 991 service	0 6201 es.com,	a
Deutlase Padewer Kyde NSN211a Cleay Cleay Phone Cleay Cleay <t< th=""><th></th><th></th><th></th><th>Sample Type</th><th>Container type</th><th></th><th></th><th></th><th></th><th></th><th>Analy</th><th>rtes</th><th></th><th></th><th></th><th></th><th></th><th>Notes/preservation</th></t<>				Sample Type	Container type						Analy	rtes						Notes/preservation
1 1 1 1 1 1 1 1 <t< th=""><th>Sample</th><th>Lab</th><th>Sampling Date</th><th>S - soil W Water</th><th>C - glass P - plastic</th><th>Hq</th><th>EC 18</th><th>ESP (incl.</th><th>*OS & IO</th><th>8MH</th><th>Pb Hg Ni Pb Hg Ni</th><th>XJT8 /HAT MA9 /38TM</th><th></th><th></th><th>NOC</th><th>Hardness</th><th></th><th></th></t<>	Sample	Lab	Sampling Date	S - soil W Water	C - glass P - plastic	Hq	EC 18	ESP (incl.	*OS & IO	8MH	Pb Hg Ni Pb Hg Ni	XJT8 /HAT MA9 /38TM			NOC	Hardness		
1 1 1 1 1 2 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 4 1 1 1 1 1 5 1 1 1 1 1 4 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 6 1 1 1 1 1 5 1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 1 1	1	1				.)	1											
2 2 1 1 1 1 3 2 1 1 1 1 3 3 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 <td>-</td> <td>1.25 </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>></td> <td>></td> <td>></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-	1.25 						>	>	>								
3 4 4 4 4 4 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 6 6 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Annorm (182	5.61 2																
3 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 4 1 1 1 1 1 4 1 1 1 1 1 4 1 1 1 1 1 5 1 1 1 1 1 4 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 <td>алан тай</td> <td></td> <td></td> <td></td> <td></td> <td>- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2</td> <td></td>	алан тай					- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2												
3 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 4 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 <td></td> <td>\$. \$</td> <td></td> <td></td> <td></td> <td>45</td> <td></td> <td>For the formation of the</td> <td></td>		\$. \$				45		For the formation of the										
8 8 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 <td><u>an an a</u></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>Contract of the second s</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u>an an a</u>	1					-					Contract of the second s						
No. No. No. No.	2	1.5						1	>	>								
3 4 4 4 4 3 4 4 4 4 4 5 4 4 4 5 4 4 4 4 6 4 4 4 4 7 4 4 4 4 6 4 4 4 4 7 4 4 4 4 6 4 4 4 4 7 4 4 4 4 6 4 4 4 4 7 4 4 4 4 6 4 4 4 4 7 4 4 4 4 6 4 4 4 4 7 4 4 4 4 6 4 4 4 4 7 4 4 4 4 6 4 4 4 4 7 4 4 4 4 6 4 4 4 4 7 4 4 4 4	1× 1× 1	r" "				-		2	1									and the of the second system of the the of the second system of the
A V V V V V Phone: (02 V V V V V Phone: (02 Pax	-s-it	1,2% 1 - 1%					-						_					
31 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>		43																
+ 35 0 ダ 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No.	20 M						>		1								
	ALL.	ya afi																
Douglas Partners Address: 96 Hermitage Road West Ryde NSW 2114 Fax:	8.00 E	- 2/5				-		>	2	5								
	Share of	uglas Pa		 Address:	96 Hermin	Sage Ros	Nesl	t Rvde NSV	V2114				Pho	1. 1. 1.	(02) 42	1836 71 1897		
to	by:	MAN N	Ĩ	S .	gned:	12		and a second	1	Time:	1000	1	Transpo	rted to Is	aborato	ry by: F	Hunter E	xpress

Page $\overline{\mathcal{S}}$ of $\overline{\mathcal{S}}$

Form COC

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

107696-A

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Nerilee Edwards

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received 73895-1, VineyardAdditional testing on soils4/4/2014/14/04/14

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 24/04/14
 / 24/04/14

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

ESP/CEC						
Our Reference:	UNITS	107696-A-3	107696-A-4	107696-A-8	107696-A-10	107696-A-15
Your Reference		5	5	13	13	19
Depth		1.0	1.5	0.1	1.0	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Exchangeable Ca	meq/100g	0.6	0.4	15	0.3	1.9
ExchangeableK	meq/100g	0.1	0.2	0.2	0.1	0.1
ExchangeableMg	meq/100g	8.5	8.2	8.0	6.5	4.3
ExchangeableNa	meq/100g	1.3	2.6	0.16	2.6	0.35
Cation Exchange Capacity	meq/100g	10	11	24	9.4	6.7
ESP	%	12	23	<1	28	5
ESP/CEC						
Our Reference:	UNITS	107696-A-16	107696-A-17	107696-A-24	107696-A-28	107696-A-33
Your Reference		19	19	23	29	32
Depth		1.0	1.5	1.0	1.0	1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Exchangeable Ca	meq/100g	0.5	0.7	2.0	0.8	0.2
ExchangeableK	meq/100g	0.1	0.1	0.2	0.2	<0.1
ExchangeableMg	meq/100g	9.0	7.4	5.4	7.1	10
ExchangeableNa	meq/100g	3.0	4.8	1.0	2.0	2.9
Cation Exchange Capacity	meq/100g	13	13	8.7	10	14
ESP	%	24	37	12	20	21
					1	
ESP/CEC						

ESP/CEC				
Our Reference:	UNITS	107696-A-34	107696-A-37	107696-A-39
Your Reference		32	37	37
Depth		1.5	0.1	0.8
Type of sample		Soil	Soil	Soil
Exchangeable Ca	meq/100g	<0.1	2.5	0.4
Exchangeable K	meq/100g	0.1	0.2	0.1
ExchangeableMg	meq/100g	8.1	1.6	6.9
ExchangeableNa	meq/100g	3.4	0.11	2.2
Cation Exchange Capacity	meq/100g	12	4.4	9.7
ESP	%	29	3	23

Miscellaneous Inorg - soil						
Our Reference:	UNITS	107696-A-3	107696-A-4	107696-A-10	107696-A-16	107696-A-17
Your Reference		5	5	13	19	19
Depth		1.0	1.5	1.0	1.0	1.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/02/2014	23/02/2014	23/02/2014	23/02/2014	23/02/2014
Date analysed	-	23/02/2014	23/02/2014	23/02/2014	23/02/2014	23/02/2014
Chloride, Cl 1:5 soil:water	mg/kg	660	710	1,300	330	980
Sulphate, SO4 1:5 soil:water	mg/kg	<10	76	410	350	230
						-
Miscellaneous Inorg - soil						
Our Reference:	UNITS	107696-A-24	107696-A-28	107696-A-33	107696-A-34	107696-A-39
Your Reference		23	29	32	32	37
Depth		1.0	1.0	1.0	1.5	0.8

Soil

23/02/2014

23/02/2014

220

62

Soil

23/02/2014

23/02/2014

20

54

Soil

23/02/2014

23/02/2014

830

250

Soil

23/02/2014

23/02/2014

600

170

Soil

23/02/2014

23/02/2014

34

41

-

-

mg/kg

mg/kg

Type of sample

Date prepared

Date analysed

Chloride, Cl 1:5 soil:water

Sulphate, SO4 1:5 soil:water

Acid Extractable metals in soil						
Our Reference:	UNITS	107696-A-3	107696-A-8	107696-A-10	107696-A-15	107696-A-16
Your Reference		5	13	13	19	19
Depth		1.0	0.1	1.0	0.5	1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	23/04/2014	23/04/2014	23/04/2014	23/04/2014	23/04/2014
Date analysed	-	23/04/2014	23/04/2014	23/04/2014	23/04/2014	23/04/2014
Arsenic	mg/kg	6	9	<4	6	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	24	17	13	12
Copper	mg/kg	8	31	9	13	22
Lead	mg/kg	14	18	15	12	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	27	3	5	11
Zinc	mg/kg	9	51	8	12	23

Acid Extractable metals in soil						
Our Reference:	UNITS	107696-A-24	107696-A-28	107696-A-33	107696-A-37	107696-A-39
Your Reference		23	29	32	37	37
Depth		1.0	1.0	1.0	0.1	0.8
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	23/04/2014	23/04/2014	23/04/2014	23/04/2014	23/04/2014
Date analysed	-	23/04/2014	23/04/2014	23/04/2014	23/04/2014	23/04/2014
Arsenic	mg/kg	10	<4	7	10	10
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	9	17	26	29
Copper	mg/kg	19	8	7	4	6
Lead	mg/kg	8	7	10	14	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	3	1	5	5
Zinc	mg/kg	41	5	4	9	6

Moisture						
Our Reference:	UNITS	107696-A-3	107696-A-8	107696-A-10	107696-A-15	107696-A-16
Your Reference		5	13	13	19	19
Depth		1.0	0.1	1.0	0.5	1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	[NT]	22/04/2014	[NT]	22/04/2014	[NT]
Date analysed	-	[NT]	23/04/2014	[NT]	23/04/2014	[NT]
Moisture	%	INS	18	INS	13	INS
[
Moisture						
Our Reference:	UNITS	107696-A-24	107696-A-28	107696-A-33	107696-A-37	107696-A-39
Your Reference		23	29	32	37	37
Depth		1.0	1.0	1.0	0.1	0.8
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2014	[NT]	22/04/2014	22/04/2014	22/04/2014
Date analysed	-	23/04/2014	[NT]	23/04/2014	23/04/2014	23/04/2014
Moisture	%	14	INS	16	12	12

Method ID	Methodology Summary
Metals-009	Determination of exchangeable cations and cation exchange capacity in soil based on Rayment and Lyons 2011.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA 22nd ED, 4110 -B.
Metals-020ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

		Clie	ent Referenc	e: 73	3895-1, Viney	vard		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
ESP/CEC						Base II Duplicate II % RPD		
ExchangeableCa	meq/100 g	0.1	Metals-009	<0.1	107696-A-8	15 15 RPD:0	LCS-1	112%
ExchangeableK	meq/100 g	0.1	Metals-009	<0.1	107696-A-8	0.2 0.2 RPD:0	LCS-1	113%
ExchangeableMg	meq/100	0.1	Metals-009	<0.1	107696-A-8	8.0 7.7 RPD:4	LCS-1	112%
ExchangeableNa	meq/100	0.1	Metals-009	<0.1	107696-A-8	0.16 0.16 RPD:0	LCS-1	105%
Cation Exchange Capacity	meq/100 g	1	Metals-009	<1.0	107696-A-8	24 23 RPD:4	[NR]	[NR]
ESP	%	1	Metals-009	<1	107696-A-8	<1 <1	[NR]	[NR]
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II % RPD		
Date prepared	-			23/04/2 014	107696-A-3	23/02/2014 23/02/2014	LCS-1	23/04/2014
Date analysed	-			23/04/2 014	107696-A-3	23/02/2014 23/02/2014	LCS-1	23/04/2014
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	107696-A-3	660 660 RPD:0	LCS-1	98%
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	107696-A-3	<10 <10	LCS-1	109%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			23/04/2 014	107696-A- 39	23/04/2014 23/04/2014	LCS-1	23/04/2014
Date analysed	-			23/04/2 014	107696-A- 39	23/04/2014 23/04/2014	LCS-1	23/04/2014
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	107696-A- 39	10 10 RPD:0	LCS-1	102%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	107696-A- 39	<0.4 <0.4	LCS-1	108%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	107696-A- 39	29 32 RPD:10	LCS-1	107%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	107696-A- 39	6 7 RPD:15	LCS-1	106%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	107696-A- 39	12 13 RPD:8	LCS-1	103%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	107696-A- 39	<0.1 <0.1	LCS-1	88%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	107696-A- 39	5 7 RPD: 33	LCS-1	109%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	107696-A- 39	6 8 RPD:29	LCS-1	107%

		Clie	ent Reference	ce: 73	895-1, Vineyard		
	UNITS	PQL	METHOD	Blank			
Moisture				_			
Date prepared	-			[NT]			
Date analysed	-			[NT]			
Moisture	%	0.1	Inorg-008	[NT]			
QUALITY CONTROL	UNITS		Dup.Sm#				
ESP/CEC				Base+L	Ouplicate + %RPD		
Exchangeable Ca	meq/10 g	0 10)7696-A-17	0.7	0.6 RPD:15		
Exchangeable K	meq/10 g	0 10)7696-A-17	0.1	0.1 RPD:0		
ExchangeableMg	meq/10 g	0 10)7696-A-17	7.4	7.5 RPD:1		
ExchangeableNa	meq/10 g	0 10)7696-A-17	4.8	4.7 RPD:2		
Cation Exchange Capacity	meq/10 g	0 10)7696-A-17	13	13 RPD:0		
ESP	%	1()7696-A-17	37	37 RPD:0		
QUALITYCONTROL	UNITS		Dup.Sm#	Duplicate		Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil				Base+E	Ouplicate + %RPD		
Date prepared	-		[NT]		[NT]	107696-A-4	23/04/2014
Date analysed	-		[NT]		[NT]	107696-A-4	23/04/2014
Chloride, Cl 1:5 soil:water	mg/kg		[NT]		[NT]	107696-A-4	76%
Sulphate, SO4 1:5 soil:water	mg/kg		[NT]		[NT]	107696-A-4	72%
QUALITYCONTROL	UNITS		Dup.Sm#		Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil				Base+D	Ouplicate + %RPD		
Date digested	-		[NT]		[NT]	107696-A-8	23/04/2014
Date analysed	-		[NT]		[NT]	107696-A-8	23/04/2014
Arsenic	mg/kg		[NT]		[NT]	107696-A-8	83%
Cadmium	mg/kg		[NT]		[NT]	107696-A-8	80%
Chromium	mg/kg		[NT]		[NT]	107696-A-8	82%
Copper	mg/kg		[NT]		[NT]	107696-A-8	90%
Lead	mg/kg		[NT]		[NT]	107696-A-8	87%
Mercury	mg/kg		[NT]		[NT]	107696-A-8	80%
Nickel	mg/kg		[NT]		[NT]	107696-A-8	78%
Zinc	mg/kg		[NT]		[NT]	107696-A-8	87%

Report Comments: 107696-A-3,10,16,28: Insufficient sample for moisture determination. Dried samples used for Acid Extactable Metals.

Asbestos ID was analysed by Approved Identifier:Not applicable for this jobAsbestos ID was authorised by Approved Signatory:Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Simon Song

Subject:

FW: Additional metals

From: Nerilee Edwards [mailto:Nerilee.Edwards@douglaspartners.com.au] Sent: Friday, 9 May 2014 3:04 PM To: Aileen Hie Subject: Additional metals

Hi Aileen,

I forgot to order all the metals I needed. Could you give me reports for the following for the below samples, ta

107696B std T/A -

Fe, Mn, B, Ba, Be, Co, Mo, Se, Sn

Reference	Sample	Sample	Depth
107696	3	5	1
107696	8	13	0.1
107696	10	13	1
107696	15	19	0.5
107696	16	19	1
107696	24	23	1
107696	28	29	1
107696	33	32	1
107696	37	37	0.1
107696	39	37	0.8
108267	22	46	0.1
108267	32	54	0.1
108267	39	72	0.1
108267	46	74	0.05
109018	1	41	0.5
109018	6	49	0.8
109018	8	54A	0.5
109018	11	60	0.5
109018	15	73	0.1
109018	17	49	0.25

Nerilee Edwards | Associate / Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | F: 02 9809 4095 | M: 0414 769 011 | E: Nerilee.Edwards@douglaspartners.com.au

1

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

107696-B

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Nerilee Edwards

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received 73895-1, VineyardAdditional testing on soils4/4/2014/09/05/14

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 13/05/14
 /
 13/05/14

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

Client Reference: 73895-1, Vineyard

Acid Extractable metals in soil Our Reference: Your Reference Depth Type of sample	UNITS	107696-B-3 5 1.0 Soil	107696-B-8 13 0.1 Soil	107696-B-10 13 1.0 Soil	107696-B-15 19 0.5 Soil	107696-B-16 19 1.0 Soil
Date digested	-	23/04/2014	23/04/2014	23/04/2014	23/04/2014	23/04/2014
Date analysed	-	23/04/2014	23/04/2014	23/04/2014	23/04/2014	23/04/2014
Iron*	mg/kg	29,000	51,000	21,000	24,000	22,000
Manganese	mg/kg	51	700	8	93	390
Boron	mg/kg	<3	<3	<3	<3	<3
Barium	mg/kg	29	190	180	27	380
Beryllium	mg/kg	<1	1	<1	<1	<1
Cobalt	mg/kg	3	13	2	4	51
Molybdenum	mg/kg	<1	<1	<1	<1	<1
Selenium	mg/kg	<2	<2	<2	<2	<2
Tin	mg/kg	<1	<1	1	<1	<1

Acid Extractable metals in soil						
Our Reference:	UNITS	107696-B-24	107696-B-28	107696-B-33	107696-B-37	107696-B-39
Your Reference		23	29	32	37	37
Depth		1.0	1.0	1.0	0.1	0.8
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	23/04/2014	23/04/2014	23/04/2014	23/04/2014	23/04/2014
Date analysed	-	23/04/2014	23/04/2014	23/04/2014	23/04/2014	23/04/2014
Iron*	mg/kg	23,000	4,700	41,000	55,000	70,000
Manganese	mg/kg	12	23	2	45	19
Boron	mg/kg	<3	<3	<3	<3	<3
Barium	mg/kg	420	140	7	28	10
Beryllium	mg/kg	<1	<1	<1	<1	<1
Cobalt	mg/kg	4	1	1	1	1
Molybdenum	mg/kg	<1	<1	<1	<1	<1
Selenium	mg/kg	<2	<2	<2	<2	<2
Tin	mg/kg	<1	<1	<1	<1	<1

73895-1. Vi **Client Reference:**

73895-1,	Vineyard
----------	----------

Acid Extractable metals in soil		
Our Reference:	UNITS	107696-B-41
Your Reference		37 - Triplicate
Depth		0.8
Type of sample		Soil
Date digested	-	23/04/2014
Date analysed	-	23/04/2014
Iron*	mg/kg	65,000
Manganese	mg/kg	21
Boron	mg/kg	<3
Barium	mg/kg	9
Beryllium	mg/kg	<1
Cobalt	mg/kg	2
Molybdenum	mg/kg	<1
Selenium	mg/kg	<2
Tin	mg/kg	<1

Client Reference: 73895-1, Vineyard

MethodID	Methodology Summary
Metals-020ICP- AES	Determination of various metals by ICP-AES.

			ient Reference		3895-1, Viney			1
QUALITY CONTROL Acid Extractable metals	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
in soil								
Date digested	-			23/04/2 014	107696-В- 39	23/04/2014 23/04/2014	LCS-9	23/04/2014
Date analysed	-			23/04/2 014	107696-В- 39	23/04/2014 23/04/2014	LCS-9	23/04/2014
Iron*	mg/kg	1	Metals-020 ICP-AES	<1	107696-В- 39	70000 68000 RPD:3	LCS-9	108%
Manganese	mg/kg	1	Metals-020 ICP-AES	<1	107696-В- 39	19 37 RPD:64	LCS-9	102%
Boron	mg/kg	3	Metals-020 ICP-AES	ୖ	107696-В- 39	<3 <3	LCS-9	96%
Barium	mg/kg	1	Metals-020 ICP-AES	<1	107696-В- 39	10 11 RPD:10	LCS-9	105%
Beryllium	mg/kg	1	Metals-020 ICP-AES	<1	107696-В- 39	<1 <1	LCS-9	90%
Cobalt	mg/kg	1	Metals-020 ICP-AES	<1	107696-В- 39	1 2 RPD:67	LCS-9	105%
Molybdenum	mg/kg	1	Metals-020 ICP-AES	<1	107696-В- 39	<1 <1	LCS-9	99%
Selenium	mg/kg	2	Metals-020 ICP-AES	2	107696-В- 39	<2 <2	LCS-9	96%
Tin	mg/kg	1	Metals-020 ICP-AES	<1	107696-В- 39	<1 <1	LCS-9	103%
QUALITYCONTROL	UNIT	s	Dup.Sm#	Duplicate		Spike Sm#	Spike % Rec	overy
Acid Extractable metals in soil	1			Base+I	Duplicate+%RF	2D		
Datedigested	-		[NT]		[NT]	107696-B-8	23/04/201	4
Date analysed	_		[NT]		[NT]	107696-B-8	23/04/201	4
Iron*	mg/k	g	[NT]		[NT]	107696-B-8	#	
Manganese	mg/k		[NT]		[NT]	107696-B-8	#	
Boron	mg/k	g	[NT]	[NT]		107696-B-8	##	
Barium	mg/k	g	[NT]	[NT]		107696-B-8	#	
Beryllium	mg/k	g	[NT]		[NT]	107696-B-8	80%	
Cobalt	mg/k	g	[NT]		[NT]	107696-B-8	86%	
Molybdenum	mg/k	g	[NT]		[NT]	[NR]	[NR]	
Selenium	mg/k	g	[NT]		[NT]	107696-B-8	72%	
Tin	mg/k	g	[NT]		[NT]	[NR]	[NR]	

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteriae has been exceeded for 107696-B-39 for Mn. Therefore a triplicate result has been issued as laboratory sample number 107696-B-41.

Acid Extractable Metals in Soil: # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Acid Extractable Metals in Soil: ## Percent recovery not available due to matrix interference, however an acceptable recovery was achieved for the LCS.

Acid Extractable Metals in Soil: Iron results may be underestimated as they are above the linear range of the instrument.

Asbestos ID was analysed by Approved Identifier:	Not applicable for this job
Asbestos ID was authorised by Approved Signatory:	Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:		
Douglas Partners Pty Ltd	ph:	02 9809 0666
96 Hermitage Rd	Fax:	02 9809 4095
West Ryde NSW 2114		

Attention: Nerilee Edwards

Sample log in details:	
Your reference:	73895-1, Vineyard
Envirolab Reference:	107696-B
Date received:	4/4/2014
Date results expected to be reported:	13/05/14

Samples received in appropriate condition for analysis:	YES
No. of samples provided	Additional testing on soils
Turnaround time requested:	Standard
Temperature on receipt (°C)	21.6
Cooling Method:	None
Sampling Date Provided:	YES

Comments:

If there is sufficient sample after testing, samples will be held for the following time frames from date of receipt of samples: Water samples - 1 month Soil and other solid samples - 2 months Samples collected in canisters - 1 week. Canisters will then be cleaned. All other samples are not retained after analysis If you require samples to be retained for longer periods then retention fees will apply as per our pricelist.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

To: Envirolab Services 12 Ashley St Chatswood 2067 Attn: Tania Notaras com.au Phone: (02) 9910 6200 Fax: (02) 9910 6201 Email: tnotaras@envirolabservices.com.au		Notes/preservation									Envirolab Services	DD No: 1 Ph: (02) 9910 6200		Time Received 11/4/14	eceived by: US C	ice for	71 1836	(02) 4271 1897
lab Services t Chatswood 2067 Notaras Phone: (02) 9910 6200 as@envirolabservices		sce jevel) B	PC (trs	+	•				×	+					- 1		(02) 4271 1836	(02) 42
bervice atswoo ras 1e: (02 enviro		C	٦٨	×				-	x	x							Phone:	Fax: (02) 4271 1897
To: Envirolab Services 12 Ashley St Chatswood 2067 Attn: Tania Notaras com.au Phone: (02) 9910 6 Email: tnotaras@envirolabserv		ace level) CP/OPP		×	×	×	×	×	×	×	×	×					α.	
To: En 12 Ashle Attn: Ta com.au Email: tn	Analytes	ssaupue	н	×	×	×	×	×	×	×	×	×						
To: E To: 238	Ana	НА	Ы	×	×	×	×	×	×	×	×	×	×					141414
douglas		кн, втех	T	×	×	×	×	×	×	×	×	×	1	1	×	×	V	Time.
er: M.West ² hone: 0412 985 g ^{ners.com.au; Matt.W Format Lab Quo}		Metals (17 total metals including priority heavy metals As, Cd, Cr, Cu, Pb, Hg, Ni, Zn and Fe, Mn, B, Ba, Be, Co, Mo, Se, Sn);		×	×	×	×	×	×	×	× :	× >	<				Address: 96 Hermitage Road West Ryde NSW 2114	Date &
RIVERSTONE/VINEYARD. 73895.00 Sampl NLE Mob. F Nerilee.Edwards@douglaspart STD; ESdat	Container type	G – glass P - plastic	4	2 2			2 1	d (9)	а, о С		a	G.P	GP	5		5	s: 96 Hern	Signed:
STONI .00 .Edward	Sample Type	W - water	IVI	~ ~	NV.	IN I	NV.	141	M	N	3	N	M	M	M		Addres	S
RIVERSTON 73895.00 NLE Nerilee.Edwar STD;	əte	sQ gnilqms2	10/4/14	10/4/14	10/4/14	10/4/14	-	-	-	-	-	10/4/14	10/4/14		10/4/14 V	-	Douglas Partners	it
red:		Lab ID						T					-				Jouglas	M.Wes
Project Name: Project No: Project Mgr: Email: Date Required:		Sample ID	BH1	BH2	BH3	BH4	BH5	BH42	BH43	BH44	BH45	BD1A/10414	BD1B/10414	T.S ZNOTIN	T.B J ESKY	Lab Report No.	Send Results to: C	Kelinquished by: M.West

Page / of /

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

108075

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Nerilee Edwards

Sample log in details:

Your Reference:73895.00, Riverstone/VineyardNo. of samples:13 WatersDate samples received / completed instructions received11/04/2014/11/04/2014

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 22/04/14
 / 28/04/14

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

Client Reference: 73895.00, Riverstone/Vineyard

			F	
VOCs in water				
Our Reference: Your Reference	UNITS	108075-1 BH1	108075-6 BH42	108075-7 BH43
Date Sampled		вні 10/04/2014	вн42 10/04/2014	вн43 10/04/2014
Type of sample		Water	Water	Water
Date extracted	-	11/04/2014	11/04/2014	11/04/2014
Date analysed	-	12/04/2014	12/04/2014	12/04/2014
Dichlorodifluoromethane	µg/L	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1
Chloroform	µg/L	<1	<1	<1
2,2-dichloropropane	µg/L	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1
Benzene	µg/L	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1
Trichloroethene		<1	<1	<1
Bromodichloromethane	µg/L			
	μg/L	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1	<1
Toluene	µg/L	<1	<1	<1
1,3-dichloropropane	µg/L	<1	<1	<1
Dibromochloromethane	µg/L	<1	<1	<1
1,2-dibromoethane	µg/L	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1	<1
Chlorobenzene	µg/L	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1
Bromoform	µg/L	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2
Styrene	µg/L	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1
o-xylene	μg/L	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1
, ,	F-5-4			

VOCs in water				
Our Reference:	UNITS	108075-1	108075-6	108075-7
Your Reference		BH1	BH42	BH43
Date Sampled		10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water
Isopropylbenzene	µg/L	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	119	120	120
Surrogate toluene-d8	%	98	99	98
Surrogate 4-BFB	%	102	103	103

vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	108075-1	108075-2	108075-3	108075-4	108075-5
Your Reference		BH1	BH2	BH3	BH4	BH5
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	11/04/2014	11/04/2014	11/04/2014	11/04/2014	11/04/2014
Date analysed	-	12/04/2014	12/04/2014	12/04/2014	12/04/2014	12/04/2014
TRHC6 - C9	μg/L	<10	<10	<10	<10	<10
TRHC6 - C10	µg/L	<10	<10	<10	<10	<10
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	<10	<10	<10
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	119	118	119	119	116
Surrogate toluene-d8	%	98	98	97	97	99
Surrogate 4-BFB	%	102	102	103	103	101

vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	108075-6	108075-7	108075-8	108075-9	108075-12
Your Reference		BH42	BH43	BH44	BH45	T.S
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	11/04/2014	11/04/2014	11/04/2014	11/04/2014	11/04/2014
Date analysed	-	12/04/2014	12/04/2014	12/04/2014	12/04/2014	12/04/2014
TRHC6 - C9	µg/L	<10	<10	<10	<10	[NA]
TRHC6 - C10	µg/L	<10	<10	<10	<10	[NA]
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	<10	<10	[NA]
Benzene	µg/L	<1	<1	<1	<1	90%
Toluene	µg/L	<1	<1	<1	<1	99%
Ethylbenzene	µg/L	<1	<1	<1	<1	100%
m+p-xylene	µg/L	<2	<2	<2	<2	97%
o-xylene	µg/L	<1	<1	<1	<1	99%
Naphthalene	µg/L	<1	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	120	120	118	119	118
Surrogate toluene-d8	%	99	98	98	98	102
Surrogate 4-BFB	%	103	103	99	100	105

vTRH(C6-C10)/BTEXN in Water		
Our Reference:	UNITS	108075-13
Your Reference		T.B
Date Sampled		10/04/2014
Type of sample		Water
Date extracted	-	11/04/2014
Date analysed	-	12/04/2014
TRHC6 - C9	µg/L	<10
TRHC6 - C10	µg/L	<10
TRHC6 - C10 less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	117
Surrogate toluene-d8	%	97
Surrogate 4-BFB	%	106

73895.00, Riverstone/Vineyard

svTRH (C10-C40) in Water						
Our Reference:	UNITS	108075-1	108075-2	108075-3	108075-4	108075-5
Your Reference		BH1	BH2	BH3	BH4	BH5
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	14/04/2014	14/04/2014	14/04/2014	14/04/2014	14/04/2014
Date analysed	-	14/04/2014	14/04/2014	14/04/2014	14/04/2014	14/04/2014
TRHC 10 - C14	µg/L	<50	<50	<50	<50	<50
TRHC 15 - C28	µg/L	<100	<100	<100	<100	<100
TRHC29 - C36	µg/L	<100	<100	<100	<100	<100
TRH>C10 - C16	µg/L	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50	<50
TRH>C16 - C34	µg/L	<100	<100	<100	<100	<100
TRH>C34 - C40	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	88	85	113	95	103
svTRH (C10-C40) in Water						7
Our Reference:	UNITS	108075-6	108075-7	108075-8	108075-9	
Your Reference		BH42	BH43	BH44	BH45	
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014	
Type of sample		Water	Water	Water	Water	
						-

14/04/2014

14/04/2014

<50

<100

<100

<50

<50

<100

<100

95

-

-

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

%

14/04/2014

14/04/2014

<50

<100

<100

<50

<50

<100

<100

112

14/04/2014

14/04/2014

<50

<100

<100

<50

<50

<100

<100

97

14/04/2014

14/04/2014

<50

<100

<100

<50

<50

<100

<100

103

Date extracted

Date analysed

TRHC 10 - C 14

TRHC 15 - C28

TRHC 29 - C36

TRH>C10 - C16

TRH>C10 - C16 less Naphthalene

TRH>C16 - C34

TRH>C34 - C40

Surrogate o-Terphenyl

(F2)

PAHs in Water						
Our Reference:	UNITS	108075-1	108075-2	108075-3	108075-4	108075-5
Your Reference		BH1	BH2	BH3	BH4	BH5
DateSampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	14/04/2014	14/04/2014	14/04/2014	14/04/2014	14/04/2014
Date analysed	-	14/04/2014	14/04/2014	14/04/2014	14/04/2014	14/04/2014
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5	<5
Total +ve PAH's	μg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	79	82	97	89	92

Client Reference: 73895.0

PAHs in Water						
Our Reference:	UNITS	108075-6	108075-7	108075-8	108075-9	108075-10
Your Reference		BH42	BH43	BH44	BH45	BD1A/10414
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	14/04/2014	14/04/2014	14/04/2014	14/04/2014	14/04/2014
Date analysed	-	14/04/2014	14/04/2014	14/04/2014	14/04/2014	14/04/2014
Naphthalene	µg/L	<1	<1	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	<1	<1
Phenanthrene	µg/L	<1	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1	<1
Benzo(b+k)fluoranthene	µg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5	<5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	92	100	94	95	91

OCP in water - trace level						
Our Reference:	UNITS	108075-1	108075-2	108075-3	108075-4	108075-5
Your Reference		BH1	BH2	BH3	BH4	BH5
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	17/04/2014	17/04/2014	17/04/2014	17/04/2014	17/04/2014
Date analysed	-	17/04/2014	17/04/2014	17/04/2014	17/04/2014	17/04/2014
HCB	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Heptachlor	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Heptachlor Epoxide	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Aldrin	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
gamma-BHC (Lindane)	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
alpha-BHC	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
beta-BHC	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
delta-BHC	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
trans-Chlordane	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
cis-Chlordane	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Oxychlordane	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Dieldrin	µg/L	<0.001	<0.001	0.003	0.002	0.005
p,p-DDE	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
p,p-DDD	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
p,p-DDT	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Endrin	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Endrin Aldehyde	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Endrin Ketone	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
alpha-Endosulfan	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
beta-Endosulfan	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Endosulfan Sulfate	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Methoxychlor	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Surrogate OC Recovery	%	91	67	79	84	126

OCP in water - trace level					
Our Reference:	UNITS	108075-6	108075-7	108075-8	108075-9
Your Reference		BH42	BH43	BH44	BH45
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water
Date extracted	-	17/04/2014	17/04/2014	17/04/2014	17/04/2014
Date analysed	-	17/04/2014	17/04/2014	17/04/2014	17/04/2014
HCB	µg/L	<0.001	<0.001	<0.001	<0.001
Heptachlor	µg/L	<0.001	<0.001	<0.001	<0.001
Heptachlor Epoxide	µg/L	<0.001	<0.001	<0.001	<0.001
Aldrin	µg/L	<0.001	<0.001	<0.001	<0.001
gamma-BHC (Lindane)	µg/L	<0.001	<0.001	<0.001	<0.001
alpha-BHC	µg/L	<0.001	<0.001	<0.001	<0.001
beta-BHC	µg/L	<0.001	<0.001	<0.001	<0.001
delta-BHC	µg/L	<0.001	<0.001	<0.001	<0.001
trans-Chlordane	µg/L	<0.001	<0.001	<0.001	<0.001
cis-Chlordane	µg/L	<0.001	<0.001	<0.001	<0.001
Oxychlordane	µg/L	<0.001	<0.001	<0.001	<0.001
Dieldrin	µg/L	<0.001	0.001	<0.001	<0.001
p,p-DDE	µg/L	<0.001	<0.001	<0.001	<0.001
p,p-DDD	µg/L	<0.001	<0.001	<0.001	<0.001
p,p-DDT	µg/L	<0.001	<0.001	<0.001	<0.001
Endrin	µg/L	<0.001	<0.001	<0.001	<0.001
Endrin Aldehyde	µg/L	<0.001	<0.001	<0.001	<0.001
Endrin Ketone	µg/L	<0.001	<0.001	<0.001	<0.001
alpha-Endosulfan	µg/L	<0.001	<0.001	<0.001	<0.001
beta-Endosulfan	µg/L	<0.001	<0.001	<0.001	<0.001
Endosulfan Sulfate	µg/L	<0.001	<0.001	<0.001	<0.001
Methoxychlor	µg/L	<0.001	<0.001	<0.001	<0.001
Surrogate OC Recovery	%	91	85	69	91

OP Pesticides -Trace Level						
Our Reference:	UNITS	108075-1	108075-2	108075-3	108075-4	108075-5
Your Reference		BH1	BH2	BH3	BH4	BH5
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	17/04/2014	17/04/2014	17/04/2014	17/04/2014	17/04/2014
Date analysed	-	17/04/2014	17/04/2014	17/04/2014	17/04/2014	17/04/2014
Demeton-S-methyl	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Dichlorvos	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Diazinon	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Dimethoate	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Chlorpyrifos	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Chlorpyrifos methyl	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Malathion	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Fenthion	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Azinphos Ethyl	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Azinphos Methyl	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Chlorfenvinphos (E)	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Chlorfenvinphos (Z)	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Ethion	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Fenitrothion	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Parathion (Ethyl)	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Parathion (Methyl)	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Primiphos Ethyl	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Primiphos Methyl	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Surrogate OP Recovery - TPP	%	113	64	110	94	134

OP Pesticides -Trace Level					
Our Reference:	UNITS	108075-6	108075-7	108075-8	108075-9
Your Reference		BH42	BH43	BH44	BH45
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water
Date extracted	-	17/04/2014	17/04/2014	17/04/2014	17/04/2014
Date analysed	-	17/04/2014	17/04/2014	17/04/2014	17/04/2014
Demeton-S-methyl	µg/L	<0.01	<0.01	<0.01	<0.01
Dichlorvos	µg/L	<0.01	<0.01	<0.01	<0.01
Diazinon	µg/L	<0.01	<0.01	<0.01	<0.01
Dimethoate	µg/L	<0.01	<0.01	<0.01	<0.01
Chlorpyrifos	µg/L	<0.01	<0.01	<0.01	<0.01
Chlorpyrifos methyl	µg/L	<0.01	<0.01	<0.01	<0.01
Malathion	µg/L	<0.01	<0.01	<0.01	<0.01
Fenthion	µg/L	<0.01	<0.01	<0.01	<0.01
Azinphos Ethyl	µg/L	<0.01	<0.01	<0.01	<0.01
Azinphos Methyl	μg/L	<0.01	<0.01	<0.01	<0.01
Chlorfenvinphos (E)	μg/L	<0.01	<0.01	<0.01	<0.01
Chlorfenvinphos (Z)	μg/L	<0.01	<0.01	<0.01	<0.01
Ethion	μg/L	<0.01	<0.01	<0.01	<0.01
Fenitrothion	μg/L	<0.01	<0.01	<0.01	<0.01
Parathion (Ethyl)	μg/L	<0.01	<0.01	<0.01	<0.01
Parathion (Methyl)	μg/L	<0.01	<0.01	<0.01	<0.01
Primiphos Ethyl	μg/L	<0.01	<0.01	<0.01	<0.01
Primiphos Methyl	μg/L	<0.01	<0.01	<0.01	<0.01
Surrogate OP Recovery - TPP	%	89	111	104	111

PCB in water - trace level Our Reference: Your Reference Date Sampled Type of sample	UNITS	108075-1 BH1 10/04/2014 Water	108075-6 BH42 10/04/2014 Water	108075-7 BH43 10/04/2014 Water
Date extracted	-	17/04/2014	17/04/2014	17/04/2014
Date analysed	-	17/04/2014	17/04/2014	17/04/2014
Aroclor 1016	µg/L	<0.01	<0.01	<0.01
Aroclor 1221	µg/L	<0.01	<0.01	<0.01
Aroclor 1232	µg/L	<0.01	<0.01	<0.01
Aroclor 1242	µg/L	<0.01	<0.01	<0.01
Aroclor 1248	µg/L	<0.01	<0.01	<0.01
Aroclor 1254	µg/L	<0.01	<0.01	<0.01
Aroclor 1260	µg/L	<0.01	<0.01	<0.01
Total PCB's (as above)	µg/L	<0.01	<0.01	<0.01

All metals in water-dissolved						
Our Reference:	UNITS	108075-1	108075-2	108075-3	108075-4	108075-5
Your Reference		BH1	BH2	BH3	BH4	BH5
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	16/04/2014	16/04/2014	16/04/2014	16/04/2014	16/04/2014
Date analysed	-	16/04/2014	16/04/2014	16/04/2014	16/04/2014	16/04/2014
Arsenic-Dissolved	µg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	µg/L	0.3	0.6	0.3	<0.1	0.3
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	µg/L	3	2	3	2	1
Lead-Dissolved	µg/L	<1	<1	2	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	15	39	67	2	15
Zinc-Dissolved	µg/L	53	36	110	35	45
Iron-Dissolved	µg/L	1,200	16	10	14	<10
Manganese-Dissolved	µg/L	2,000	6,900	9,400	200	4,500
Boron-Dissolved	µg/L	18	20	24	27	26
Barium-Dissolved	µg/L	62	96	110	66	44
Beryllium-Dissolved	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt-Dissolved	µg/L	27	120	150	<1	66
Molybdenum-Dissolved	µg/L	<1	<1	<1	3	<1
Selenium-Dissolved	µg/L	<1	1	2	<1	<1
Tin-Dissolved	µg/L	<1	<1	<1	<1	<1

All metals in water-dissolved						
Our Reference:	UNITS	108075-6	108075-7	108075-8	108075-9	108075-10
Your Reference		BH42	BH43	BH44	BH45	BD1A/10414
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	16/04/2014	16/04/2014	16/04/2014	16/04/2014	16/04/2014
Date analysed	-	16/04/2014	16/04/2014	16/04/2014	16/04/2014	16/04/2014
Arsenic-Dissolved	μg/L	<1	<1	3	<1	<1
Cadmium-Dissolved	μg/L	0.2	<0.1	0.2	<0.1	0.3
Chromium-Dissolved	μg/L	<1	1	15	<1	<1
Copper-Dissolved	μg/L	1	<1	4	<1	<1
Lead-Dissolved	μg/L	<1	<1	5	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	10	1	5	2	14
Zinc-Dissolved	μg/L	15	9	33	13	32
Iron-Dissolved	μg/L	<10	160	160	<10	<10
Manganese-Dissolved	μg/L	3,200	110	65	590	4,400
Boron-Dissolved	μg/L	33	19	52	18	25
Barium-Dissolved	μg/L	64	34	34	120	46
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt-Dissolved	μg/L	11	<1	1	3	65
Molybdenum-Dissolved	μg/L	2	1	18	2	<1
Selenium-Dissolved	μg/L	1	2	1	<1	<1
Tin-Dissolved	µg/L	<1	<1	<1	<1	<1

Client Reference: 73895.00, Riverstone/Vineyard

All metals in water-dissolved		
Our Reference:	UNITS	108075-11
Your Reference		BD1B/10414
Date Sampled		10/04/2014
Type of sample		Water
Mercury-Dissolved	µg/L	<0.05

Cations in water Dissolved						
Our Reference:	UNITS	108075-1	108075-2	108075-3	108075-4	108075-5
Your Reference		BH1	BH2	BH3	BH4	BH5
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water	Water
Date digested	-	14/04/2014	14/04/2014	14/04/2014	14/04/2014	14/04/2014
Date analysed	-	14/04/2014	14/04/2014	14/04/2014	14/04/2014	14/04/2014
Calcium - Dissolved	mg/L	160	170	69	42	84
Magnesium - Dissolved	mg/L	860	820	600	120	490
Hardness	mgCaCO3 /L	4,000	3,800	2,600	600	2,200

Cations in water Dissolved					
Our Reference:	UNITS	108075-6	108075-7	108075-8	108075-9
Your Reference		BH42	BH43	BH44	BH45
Date Sampled		10/04/2014	10/04/2014	10/04/2014	10/04/2014
Type of sample		Water	Water	Water	Water
Date digested	-	14/04/2014	14/04/2014	14/04/2014	14/04/2014
Date analysed	-	14/04/2014	14/04/2014	14/04/2014	14/04/2014
Calcium - Dissolved	mg/L	120	63	27	47
Magnesium - Dissolved	mg/L	640	200	46	72
Hardness	mgCaCO3 /L	2,900	1,000	250	410

Client Reference: 73895.00, Riverstone/Vineyard

MethodID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Ext-020	Analysis subcontracted to Australian Government - National Measurement Institute. NATA Accreditation No: 198
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.

Client Reference: 73895.00, Riverstone/Vineyard											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
VOCs in water						Base II Duplicate II % RPD					
Date extracted	-			11/04/2 014	[NT]	[NT]	LCS-W1	11/04/2014			
Date analysed	-			12/04/2 014	[NT]	[NT]	LCS-W1	12/04/2014			
Dichlorodifluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Chloromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Vinyl Chloride	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Bromomethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Chloroethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Trichlorofluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
1,1-Dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Trans-1,2- dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,1-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	105%			
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Bromochloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Chloroform	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	105%			
2,2-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	111%			
1,1,1-trichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	107%			
1,1-dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Cyclohexane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Carbon tetrachloride	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Dibromomethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Trichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	113%			
Bromodichloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	106%			
trans-1,3- dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,1,2-trichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Toluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,3-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Dibromochloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	101%			
1,2-dibromoethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Tetrachloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	101%			
1,1,1,2- tetrachloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Chlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Ethylbenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Bromoform	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
m+p-xylene	µg/L	2	Org-013	~2	[NT]	[NT]	[NR]	[NR]			
Styrene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,1,2,2- tetrachloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
o-xylene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II % RPD		
1,2,3-trichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
lsopropylbenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-013	112	[NT]	[NT]	LCS-W1	103%
Surrogate toluene-d8	%		Org-013	98	[NT]	[NT]	LCS-W1	100%
Surrogate 4-BFB	%		Org-013	101	[NT]	[NT]	LCS-W1	99%

Г	1		ent Referenc	-		erstone/Vineyard	T	Т
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water					511#	Base II Duplicate II % RPD		Recovery
Date extracted	-			11/04/2 014	[NT]	[NT]	LCS-W1	11/04/2014
Date analysed	-			12/04/2 014	[NT]	[NT]	LCS-W1	12/04/2014
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	107%
TRHC6 - C10	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	107%
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	104%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	106%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	110%
m+p-xylene	µg/L	2	Org-016	~2	[NT]	[NT]	LCS-W1	107%
o-xylene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	105%
Naphthalene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Surrogate	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Org-016	112	[NT]	[NT]	LCS-W1	112%
Dibromofluoromethane	70		Cigoro		[]	[]		11270
Surrogate toluene-d8	%		Org-016	98	[NT]	[NT]	LCS-W1	101%
Surrogate 4-BFB	%		Org-016	101	[NT]	[NT]	LCS-W1	98%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Water						Base II Duplicate II %RPD		
Date extracted	-			14/04/2 014	108075-1	14/04/2014 14/04/2014	LCS-W1	14/04/2014
Date analysed	-			14/04/2 014	108075-1	14/04/2014 14/04/2014	LCS-W1	14/04/2014
TRHC 10 - C14	µg/L	50	Org-003	<50	108075-1	<50 <50	LCS-W1	62%
TRHC 15 - C28	µg/L	100	Org-003	<100	108075-1	<100 <100	LCS-W1	76%
TRHC 29 - C 36	µg/L	100	Org-003	<100	108075-1	<100 <100	LCS-W1	91%
TRH>C10 - C16	µg/L	50	Org-003	<50	108075-1	<50 <50	LCS-W1	62%
TRH>C16 - C34	µg/L	100	Org-003	<100	108075-1	<100 <100	LCS-W1	76%
TRH>C34 - C40	μg/L	100	Org-003	<100	108075-1	<100 <100	LCS-W1	91%
Surrogate o-Terphenyl	%		Org-003	79	108075-1	88 88 RPD:0	LCS-W1	66%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Water					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			14/04/2 014	108075-1	14/04/2014 14/04/2014	LCS-W1	14/04/2014
Date analysed	-			14/04/2 014	108075-1	14/04/2014 14/04/2014	LCS-W1	14/04/2014
Naphthalene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	LCS-W1	86%
Acenaphthylene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	[NR]	[NR]
Acenaphthene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	[NR]	[NR]
Fluorene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	LCS-W1	100%
Phenanthrene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	LCS-W1	94%

73895.00. Riverstone/Vinevard

Client Reference: 73895.00, Riverstone/Vineyard									
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
PAHs in Water						Base II Duplicate II % RPD			
Anthracene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	[NR]	[NR]	
Fluoranthene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	LCS-W1	92%	
Pyrene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	LCS-W1	95%	
Benzo(a)anthracene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	[NR]	[NR]	
Chrysene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	LCS-W1	89%	
Benzo(b+k)fluoranthene	µg/L	2	Org-012 subset	~2	108075-1	<2 <2	[NR]	[NR]	
Benzo(a)pyrene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	LCS-W1	99%	
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	[NR]	[NR]	
Dibenzo(a,h)anthracene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	[NR]	[NR]	
Benzo(g,h,i)perylene	µg/L	1	Org-012 subset	<1	108075-1	<1 <1	[NR]	[NR]	
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	95	108075-1	79 75 RPD:5	LCS-W1	94%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %	
	00				Sm#		opino onim	Recovery	
OCP in water - trace						Base II Duplicate II % RPD		,	
level									
Date extracted	-			17/04/2	[NT]	[NT]	LCS-W1	17/04/2014	
				014					
Date analysed	-			17/04/2 014	[NT]	[NT]	LCS-W1	17/04/2014	
HCB	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
Heptachlor	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	LCS-W1	90%	
Heptachlor Epoxide	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
Aldrin	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	LCS-W1	80%	
gamma-BHC (Lindane)	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	LCS-W1	78%	
alpha-BHC	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
beta-BHC	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
delta-BHC	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
trans-Chlordane	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
cis-Chlordane	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
Oxychlordane	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
Dieldrin	μg/L	0.001	Ext-020	<0.001	[NT]	[NT]	LCS-W1	75%	
p,p-DDE	μg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
p,p-DDD	μg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
p,p-DDT	μg/L	0.001	Ext-020	<0.001	[NT]	[NT]	LCS-W1	78%	
Endrin	μg/L	0.001	Ext-020	<0.001	[NT]	[NT]	LCS-W1	79%	
Endrin Aldehyde	μg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
Endrin Ketone	μg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
alpha-Endosulfan	μg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]	
	۳ ۵ , ۳	5.001	020	10.001	[[]	61	[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Envirolab Reference: 108075 Revision No: R 00

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
OCP in water - trace level						Base II Duplicate II % RPD		
beta-Endosulfan	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulfate	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]
Methoxychlor	µg/L	0.001	Ext-020	<0.001	[NT]	[NT]	[NR]	[NR]
Surrogate OC Recovery	%		Ext-020	[NT]	[NT]	[NT]	LCS-W1	74%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OP Pesticides -Trace Level						Base II Duplicate II % RPD		
Date extracted	-			17/04/2 014	[NT]	[NT]	LCS-W1	17/04/2014
Date analysed	-			17/04/2 014	[NT]	[NT]	LCS-W1	17/04/2014
Demeton-S-methyl	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Dichlorvos	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Diazinon	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	LCS-W1	79%
Dimethoate	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Chlorpyrifos	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	LCS-W1	76%
Chlorpyrifos methyl	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Malathion	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Fenthion	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Azinphos Ethyl	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Azinphos Methyl	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Chlorfenvinphos (E)	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Chlorfenvinphos (Z)	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Ethion	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	LCS-W1	84%
Fenitrothion	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Parathion (Ethyl)	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	LCS-W1	91%
Parathion (Methyl)	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Primiphos Ethyl	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Primiphos Methyl	µg/L	0.010	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Surrogate OP Recovery -TPP	%		Ext-020	[NT]	[NT]	[NT]	LCS-W1	79%

		Clie	nt Referenc	e: 73	3895.00, Rive	erstone/Vineyard		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCB in water - trace level						Base II Duplicate II % RPD		
Date extracted	-			17/04/2 014	[NT]	[NT]	LCS-W1	17/04/2014
Date analysed	-			17/04/2 014	[NT]	[NT]	LCS-W1	17/04/2014
Aroclor 1016	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	μg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Aroclor 1260	μg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Total PCB's (as above)	µg/L	0.010	Ext-020	[NT]	[NT]	[NT]	LCS-W1	91%
QUALITY CONTROL		PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
All metals in water-	UNITS	FQL		Dial IK	Sm#	Base II Duplicate II % RPD	Spike Sill#	Recovery
dissolved								
Date prepared	-			16/04/2 014	108075-9	16/04/2014 16/04/2014	LCS-W1	16/04/2014
Date analysed	-			16/04/2 014	108075-9	16/04/2014 16/04/2014	LCS-W1	16/04/2014
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	108075-9	<1 <1	LCS-W1	101%
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	108075-9	<0.1 <0.1	LCS-W1	96%
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	108075-9	<1 <1	LCS-W1	102%
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	108075-9	<1 <1	LCS-W1	102%
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	108075-9	<1 <1	LCS-W1	99%
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	108075-9	<0.05 <0.05	LCS-W1	104%
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	108075-9	2 2 RPD:0	LCS-W1	99%
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	108075-9	13 13 RPD:0	LCS-W1	100%
Iron-Dissolved	µg/L	10	Metals-022 ICP-MS	<10	108075-9	<10 <10	LCS-W1	102%
Manganese-Dissolved	µg/L	5	Metals-022 ICP-MS	45	108075-9	590 570 RPD:3	LCS-W1	96%
Boron-Dissolved	µg/L	5	Metals-022 ICP-MS	45	108075-9	18 17 RPD:6	LCS-W1	96%
Barium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	108075-9	120 120 RPD:0	LCS-W1	96%
Beryllium-Dissolved	µg/L	0.5	Metals-022 ICP-MS	<0.5	108075-9	<0.5 <0.5	LCS-W1	86%
Cobalt-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	108075-9	3 3 RPD:0	LCS-W1	104%
Molybdenum-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	108075-9	2 2 RPD:0	LCS-W1	93%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
All metals in water- dissolved					Sm#	Base II Duplicate II % RPD)	Recovery
Selenium-Dissolved	µg/L	1	Metals-022	<1	108075-9	<1 <1	LCS-W1	97%
Tin-Dissolved	µg/L	1	ICP-MS Metals-022 ICP-MS	<1	108075-9	<1 <1	LCS-W1	93%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Cations in water Dissolved						Base II Duplicate II % RPD)	
Datedigested	-			14/04/2 014	108075-8	14/04/2014 14/04/201	4 LCS-W3	14/04/2014
Date analysed	-			14/04/2 014	108075-8	14/04/2014 14/04/201	4 LCS-W3	14/04/2014
Calcium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	108075-8	27 27 RPD:0	LCS-W3	103%
Magnesium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	108075-8	46 45 RPD:2	LCS-W3	103%
Hardness	mgCaCO 3/L	3		3.0	108075-8	250 250 RPD:0	[NR]	[NR]
QUALITYCONTROL	UNITS	S	Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
svTRH (C10-C40) in Wate	r			Base+I	Duplicate+%RF	סי		
Date extracted	-		[NT]		[NT]	108075-2	14/04/201	4
Date analysed	-		[NT]		[NT]	108075-2	14/04/201	4
TRHC 10 - C 14	µg/L		[NT]		[NT]	108075-2	83%	
TRHC 15 - C28	μg/L		[NT]		[NT]	108075-2	82%	
TRHC 29 - C 36	μg/L		[NT]		[NT]	108075-2	94%	
TRH>C10 - C16	μg/L		[NT]		[NT]	108075-2	83%	
TRH>C16 - C34	μg/L		[NT]		[NT]	108075-2	82%	
TRH>C34 - C40	µg/L		[NT]		[NT]	108075-2	94%	
Surrogate o-Terphenyl	×9°-		[NT]		[NT]	108075-2	73%	
QUALITYCONTROL	UNITS	3	Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	overv
PAHs in Water	or and		Buptonin	Base+I	Duplicate + %RF			
Date extracted	-		[NT]		[NT]	108075-2	14/04/201	4
Date analysed	-		[NT]		[NT]	108075-2	14/04/201	
Naphthalene	µg/L		[NT]		[NT]	108075-2	91%	
Acenaphthylene	μg/L		[NT]		[NT]	[NR]	[NR]	
Acenaphthene	µg/L		[NT]		[NT]	[NR]	[NR]	
Fluorene	µg/L		[NT]		[NT]	108075-2	97%	
Phenanthrene	µg/L		[NT]		[NT]	108075-2	94%	
Anthracene	µg/L		[NT]		[NT]	[NR]	[NR]	
Fluoranthene	µg/L		[NT]		[NT]	108075-2	92%	
Pyrene	µg/L		[NT]		[NT]	108075-2	96%	
Benzo(a)anthracene	µg/L		[NT]		[NT]	[NR]	[NR]	
Chrysene	µg/L		[NT]		[NT]	108075-2	90%	
Benzo(b+k)fluoranthene	μg/L		[NT]		[NT]	[NR]	[NR]	

		Client Referenc	e: 73895.00, Riversto	one/Vineyard	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Water			Base + Duplicate + %RPD		
Benzo(a)pyrene	µg/L	[NT]	[NT]	108075-2	103%
Indeno(1,2,3-c,d)pyrene	µg/L	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	108075-2	89%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Cations in water Dissolved			Base + Duplicate + %RPD		
Datedigested	-	[NT]	[NT]	108075-9	14/04/2014
Date analysed	-	[NT]	[NT]	108075-9	14/04/2014
Calcium - Dissolved	mg/L	[NT]	[NT]	108075-9	#
Magnesium - Dissolved	mg/L	[NT]	[NT]	108075-9	#
Hardness	mgCaCO 3/L	[NT]	[NT]	[NR]	[NR]

Report Comments:

CATIONS_W: # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

OC/OP/PCB's in water analysed by NMI. Report No.RN1018131.

Asbestos ID was analysed by Approved Identifier:	Not applicable for this job
Asbestos ID was authorised by Approved Signatory:	Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

SAMPLE RECEIPT ADVICE

Client:		
Douglas Partners Pty Ltd	ph:	02 9809 0666
96 Hermitage Rd	Fax:	02 9809 4095
West Ryde NSW 2114		

Attention: Nerilee Edwards

Sample log in details:	
Your reference:	73895.00, Riverstone/Vineyard
Envirolab Reference:	108075
Date received:	11/04/2014
Date results expected to be reported:	22/04/14

Samples received in appropriate condition for analysis:	YES
No. of samples provided	11 Waters
Turnaround time requested:	Standard
Temperature on receipt (°C)	15.4
Cooling Method:	Ice Pack
Sampling Date Provided:	YES

Comments:

If there is sufficient sample after testing, samples will be held for the following time frames from date of receipt of samples: Water samples - 1 month Soil and other solid samples - 2 months Samples collected in canisters - 1 week. Canisters will then be cleaned. All other samples are not retained after analysis

If you require samples to be retained for longer periods then retention fees will apply as per our pricelist.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Geotechnics - Environment - Groundwater	vironment - Gru	undwater													C	CHAIN OF CUSTONY
Project Name: Project No: Project Mgr: Email: Date Required:		Vineyard Pro 73895-1 NLE nerilee.edward STD; ESdat F	Vineyard Precinct	t. Sampler: NLE. Mob. Phone: 0414 769 01 <u>ouglaspartners.com.au</u> at	er:N hone: (LE	4 769 011. <u>. au</u> Lab Quote No.			To: Attn: Phone	To: Envirolab Services 12 Ashley St Chatswood 2067 Attn: Tania Notaras Phone: (02) 9910 6200 Fax: (02) 9 Email: thotaras@envirolaheed	ab Sen ey St (lotaras 910 62(rices Chatswi 0 F	ood 20 ax: (0)	991C	COP
		6	Sample Type	Container type						Analytes	s					Notes/preservation
Sample ID	Lab ID	Sampling Date	lios - S W – water	G – glass P - glastic	Hq	EC 1:5	ESP (incl. CEC)	CI & SO4	8MH	Pb Hg Ni As Cd Cr	MAP BTEX MAP (387M	(Trace level) OCP/OPP	(Trace level) PCB	NOC	Clay Hardness	content
4.0/1					7	5									+	>
7/0.8					-	-			1	1	1				1	
0 10.5					-	-			+							
5.1/0										1					-	
4/10-						-			-					1	-	
4/200						-			-		T		(Enviraleb Servic	
0.1/5						-	_	-			1			AB Ch.	hatswood NSW 20	V 2067
5/1.5											-	1	Job No:	12	8130 991	<u>9910 6200</u>
28/1.0					-								Date R	Received:	111	4
~					-								Recove	ed by: L	and and	
1					_								Cooling	Ice/lice	mbient Core	0
36 / 1.0					1.	1							Securit	Intacto	E	
36/15					A	N									-	
Lab Report No.	Douglas Partners	:	 Address:	96 Hermita	ge Road	West F	96 Hermitage Road West Ryde NSW 2114	14				Phone:	(02	(02) 4271 1836	36	_
Relinquished by:			Sig	Signed [.]			Dat	Date & Time.			F			1124(5	1891	
Received Bv: P& C	00	10	Date & Time:		MININ	le la	רמו	E S	<u>v</u> i			usporte	d to lad	oratory	by: Hunte	I ransported to laboratory by: Hunter Express

Form COC

of

Page

Project Name:Viney	:	Vineyarc	Vineyard Precinct.	t						To:	Envire	Envirolab Services	rvices				Batch 2 21
Project No: Project Mgr: Email: Date Required:	S IS S	NLE73895-1 NLE nerilee.edwarc STD; ESdat	895-1 S N 	73895-1 Sampler:NLE NLE Mob. Phone: 0414 765 <u>nerilee.edwards@douglaspartners.com.au</u> STD; ESdat FormatLab (Sampler: NLE Mob. Phone: 04 glaspartners.cor	NLE 0414 La	0.0 C	11. Dte No.		Attn Phoi	12 Ashley St Ch Attn: Tania Notaras Phone: (02) 9910 6200 Email: tnotaras6	hley St Notara 9910 6. tnotar	12 Ashley St Chatswood 2067 Tania Notaras e: (02) 9910 6200 Fax: (02) 9 Email: tnotaras@envirolahsen	vood 2 Fax: (c virolabs	vood 2067 Fax: (02) 9910 6201 virolabservices com		
2		б	Sample Type	Container type						Analytes	rtes						Notes/preservation
Sample JLE ID	Lab ID	Samplin Date	S - soil W – water	G – glassi P - plastic	Hq	EC 1:5	ESP (incl. CEC)	¢OS & IO	8MH	Pb Hg Ni Pb Hg Ni	ХЭТА \НЯТ НАЯ \ЭВТМ	(Trace level)	(Trace level) PCB	NOC	Hardness	Clay Content	
38 0.3					2	7									+)	
8.0/82																T	
5.1/82																	
39/0.5															1		
39/1.0																	
39/15					>	>											
															+	1	
							-										
Lab Report No.	Douglas Partners	I I	 Address:	96 Hermit	I age Roa	I Vest	96 Hermitage Road West Rvde NSW 2114	12114				Phone:	(02	(02) 4271 1836	136		
Relinquished by:			Signed:	Signed:				Date & Time:	ime:			anspor	tola	Dorator	bv: Hu	nter Exp	ress

a

Form COC

of

Page

CERTIFICATE OF ANALYSIS

108170

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Nerilee Edwards

Sample log in details:

Your Reference:	73895-1, Vineya	rd	
No. of samples:	17 Soils		
Date samples received / completed instructions received	14/04/14	/	14/04/14

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 23/04/14
 / 22/04/14

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

Client Reference: 73895-1, Vineyard

Miscellaneous Inorg - soil						
Our Reference:	UNITS	108170-1	108170-2	108170-3	108170-4	108170-5
Your Reference		7	7	10	10	25
Depth		0.4	0.8	0.5	1.5	1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/04/2014	16/04/2014	16/04/2014	16/04/2014	16/04/2014
Date analysed	-	16/04/2014	16/04/2014	16/04/2014	16/04/2014	16/04/2014
pH 1:5 soil:water	pH Units	4.8	5.0	6.2	5.9	5.5
Electrical Conductivity 1:5 soil:water	μS/cm	73	53	40	28	120

Miscellaneous Inorg - soil						
Our Reference:	UNITS	108170-6	108170-7	108170-8	108170-9	108170-10
Your Reference		25	28	28	36	36
Depth		1.5	1.0	1.5	0.5	1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/04/2014	16/04/2014	16/04/2014	16/04/2014	16/04/2014
Date analysed	-	16/04/2014	16/04/2014	16/04/2014	16/04/2014	16/04/2014
Date analysed pH 1:5 soil:water	- pH Units	16/04/2014 5.0	16/04/2014 5.1	16/04/2014 5.1	16/04/2014 4.9	16/04/2014 4.7

Miscellaneous Inorg - soil						
Our Reference:	UNITS	108170-11	108170-12	108170-13	108170-14	108170-15
Your Reference		36	38	38	38	39
Depth		1.5	0.3	0.8	1.5	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/04/2014	16/04/2014	16/04/2014	16/04/2014	16/04/2014
Date analysed	-	16/04/2014	16/04/2014	16/04/2014	16/04/2014	16/04/2014
pH 1:5 soil:water	pH Units	4.7	5.9	5.3	5.0	4.7
Electrical Conductivity 1:5 soil:water	µS/cm	630	71	560	590	570

Miscellaneous Inorg - soil			
Our Reference:	UNITS	108170-16	108170-17
Your Reference		39	39
Depth		1.0	1.5
Type of sample		Soil	Soil
Date prepared	-	16/04/2014	16/04/2014
Date prepared Date analysed	-	16/04/2014 16/04/2014	16/04/2014 16/04/2014
	- - pHUnits		

Client Reference: 73895-1, Vineyard

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons.

Client Reference:

73895-1, Vineyard

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II % RPD		
Date prepared	-			16/04/2 014	108170-1	16/04/2014 16/04/2014	LCS-1	16/04/2014
Date analysed	-			16/04/2 014	108170-1	16/04/2014 16/04/2014	LCS-1	16/04/2014
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	108170-1	4.8 4.7 RPD:2	LCS-1	101%
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	108170-1	73 73 RPD:0	LCS-1	102%
QUALITYCONTROL	UNITS	5	Dup. Sm#		Duplicate			
Miscellaneous Inorg - soil				Base + I	Duplicate+%RP	D		
Date prepared	-		108170-11	16/04/2	014 16/04/201	4		
Date analysed	-		108170-11	16/04/2	014 16/04/201	4		
pH 1:5 soil:water	pH Un	its	108170-11	4.7	4.7 RPD:0			
Electrical Conductivity 1:5 soil:water	µS/cr	n	108170-11	630	590 RPD:7			

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

SAMPLE RECEIPT ADVICE

Client:		
Douglas Partners Pty Ltd	ph:	02 9809 0666
96 Hermitage Rd	Fax:	02 9809 4095
West Ryde NSW 2114		

Attention: Nerilee Edwards

Sample log in details:	
Your reference:	73895-1, Vineyard
Envirolab Reference:	108170
Date received:	14/04/14
Date results expected to be reported:	23/04/14

Samples received in appropriate condition for analysis:	YES
No. of samples provided	17 Soils
Turnaround time requested:	Standard
Temperature on receipt (°C)	21
Cooling Method:	None
Sampling Date Provided:	YES

Comments:

If there is sufficient sample after testing, samples will be held for the following time frames from date of receipt of samples: Water samples - 1 month

Soil and other solid samples - 2 months

Samples collected in canisters - 1 week. Canisters will then be cleaned.

All other samples are not retained after analysis

If you require samples to be retained for longer periods then retention fees will apply as per our pricelist.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Project Name: Project No: Project Mgr: Email:	: : Z 2	Vineyard Pr 73895-1 NLE	Vineyard Precinct. 73895-1 NLE	Samp Mob. I	ler:1 hone:	0414	Sampler: Nee M.W//T Mob. Phone: 0414 769 01	Sampler: Nw//T.R.M, //MWH Mob. Phone: 0414 769 011.	XH.	To: Attn:		Envirolab Services 12 Ashley St Chats Tania Notaras	rrvices Chatsv Is	Envirolab Services 12 Ashley St Chatswood 2067 Tania Notaras		Batch	Barteli Z 1/2
Date Required:	0	STD; ESC	STD; ESdat FormatLab	at		L	om.au …Lab Quote No.	e No.		Pho	Phone: (02) 9910 6200 Email: tnotaras(9910 6. : tnotar	200 as@env	Fax: (02) 9910 6201 virolabservices.com	2) 9910 ervices	e: (02) 9910 6200 Fax: (02) 9910 6201 Email: tnotaras@envirolabservices.com.au	
		б	Sample Type	Container type						Analytes	/tes					z	Notes/preservation
Sample ID	Lab ID	Samplin Date	S - soil W - water	G – glass P - plastic	Hq	EC 1:5	CEC) ESP (incl.	CI & SO⁴	8MH	Pb Hg Ni As Cd Cr	XAT8 \HAT HA9 \38TM	(Trace level)	(Trace level) PCB	NOC	Hardness	Clay Sontent	
7/04					7	2								-	+		
7/0.8					-	-										+	
0 10.5															-		
10/1.5																+	
14/10		m. 55 J	y												-		
4/200		Saupl	0 5												+		
51.0		men	d a. a	- tel							EUVI	ENVIROLAB	Envirolah 12	Services Ashley St	+	1	
25/1-5			3								40		Chatswood NSW 2067 Ph: (02) 9910 6200	SW 2067 910 6200	-		
0-1/8-								-			000	.01	08 33		-	-	
21/20					-	-		-			Date	Date Received:	10:30	ź,	-		
26/ 22						-		-			Recei		4				
1							-				Temp	o: CollAmbient	bient				
-					/	1					Secur	nty. not	nty Intact Broken/None	ne			
<1/00					A	\geq	_									\vdash	
Lab Report No.	Douglas Partners	:	 Address:	96 Hermitage Road West Ryde NSW 2114	ige Roa	d West	Ryde NS	W 2114				Phone: Fax	(02	(02) 4271 1836 (02) 4271 1836	1807		
Relinquished by: Received By: 0 0 0 0	4	(Signed:	Signed:	1			~	Time:		1	ransport	ed to lat	oratory	bv: Hun	Transported to laboratory by: Hunter Express	SS

- 4

Form COC

of

Page

CERTIFICATE OF ANALYSIS

108336

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Nerilee Edwards

Sample log in details:

Your Reference:	73895-1, Vin	eyard	Precinct
No. of samples:	2 Soils		
Date samples received / completed instructions received	16/04/14	/	16/04/14

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 28/04/14
 / 23/04/14

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

Client Reference: 73895-1, Vineyard Precinct

Miscellaneous Inorg - soil			
Our Reference:	UNITS	108336-1	108336-2
Your Reference		14	14
Depth		1.0	2.0
Type of sample		Soil	Soil
Date prepared	-	17/04/2014	17/04/2014
Date analysed	-	17/04/2014	17/04/2014
pH 1:5 soil:water	pH Units	5.3	5.0
Electrical Conductivity 1:5 soil:water	µS/cm	430	1,100

Client Reference: 73895-1, Vineyard Precinct

MethodID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons.

Client Reference: 73895-1, Vineyard Precinct									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Miscellaneous Inorg - soil						Base II Duplicate II % RPD			
Date prepared	-			17/04/2 014	[NT]	[NT]	LCS-1	17/04/2014	
Date analysed	-			17/04/2 014	[NT]	[NT]	LCS-1	17/04/2014	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-1	102%	
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	[NT]	[NT]	LCS-1	103%	

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

SAMPLE RECEIPT ADVICE

Client:		
Douglas Partners Pty Ltd	ph:	02 9809 0666
96 Hermitage Rd	Fax:	02 9809 4095
West Ryde NSW 2114		

Attention: Nerilee Edwards

73895-1, Vineyard Precinct
108336
16/04/14
28/04/14

Samples received in appropriate condition for analysis:	YES
No. of samples provided	2 Soils
Turnaround time requested:	Standard
Temperature on receipt (°C)	16.3
Cooling Method:	Ice Pack
Sampling Date Provided:	YES

Comments:

If there is sufficient sample after testing, samples will be held for the following time frames from date of receipt of samples: Water samples - 1 month

Soil and other solid samples - 2 months

Samples collected in canisters - 1 week. Canisters will then be cleaned.

All other samples are not retained after analysis

If you require samples to be retained for longer periods then retention fees will apply as per our pricelist.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au