

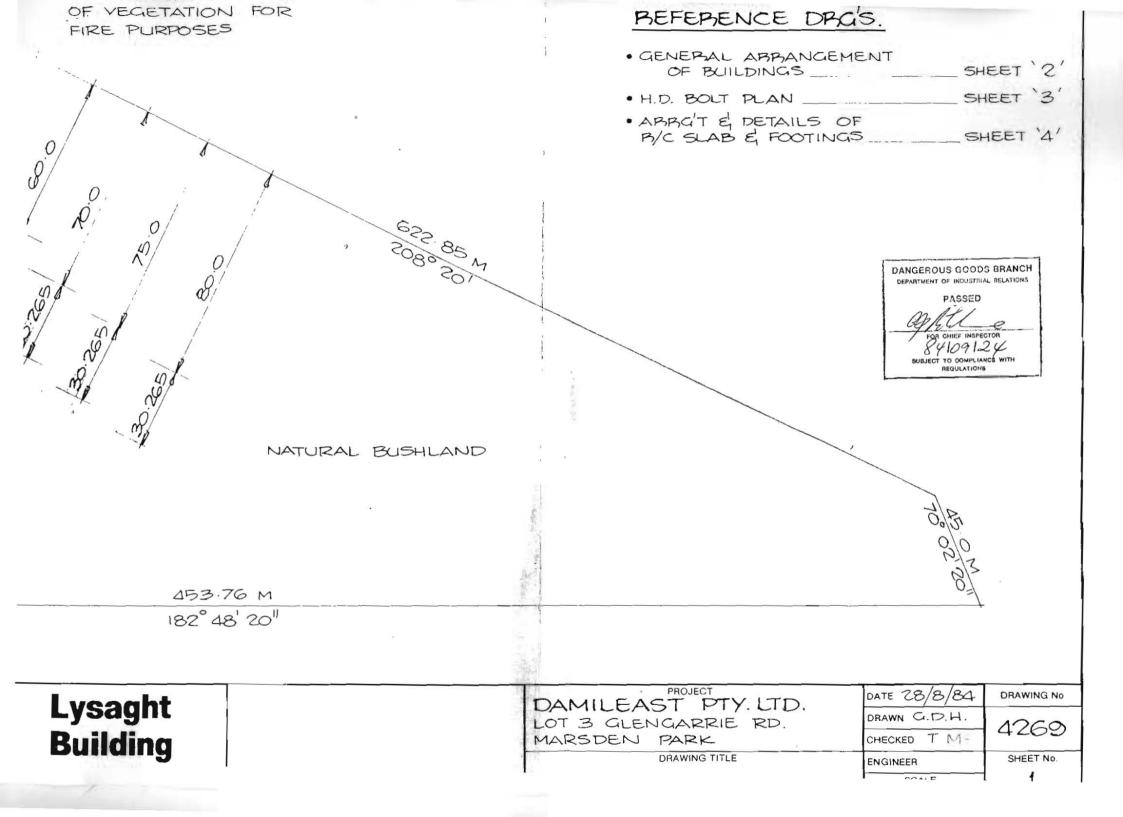
GENERAL SPECIFICATION.

- · ALL ROADWAYS, TURNING AREAS E CAR PARKING SPACES TO HAVE STANDARD BASE CONSTRUCTION E BE SEALED WITH HARD STANDING ALL WEATHER BITUMINOUS ASPHALT
- · MINIMUM RADIUS ROADWAYS & TURNING AREAS TO BE 6.0 METRES
- ALL BUILDINGS EXCEPT OFFICE/AMMEN.

 BLOCK TO BE CLAD WITH TRIMDEK

 HI-TEN SHEETING ~ COLORBOND FINISH

 (BRONZE OLIVE) TO BLEND WITH


 BUSHLAND & MEET COUNCIL REQUIREMENTS

NOTE

ALL DIMENSION IN METRES

AREA 30.0 METRES
CLEAR OF ALL BUILDINGS
TO BE CLEARED FREE
OF VEGETATION FOR
FIRE PURPOSES

REFERENCE DROS.

FEF \$10.00 per Depot

		Carcanilla (Service of the Servic
Name of Applicant in full (see over)	Surname	RICHARD SON Given Names	P14. 210
Trading name or occupier's name (if any)	RICHARDIO.	4 - GROUP MONETRI	e3
Postal address	P.O. BOY 288	PENRIH	Postcode 2750
Telephone number of applicant	STD Code 047	Number	31. 3255.
Address of the premises in or on which the depot or depots are situated (including street number, if any)	OID U mode	RD. MARS DEN	PARK 2765
Nature of premises (see over)	DEPOT.		

PLEASE ATTACH SITE PLAN

Particulars of type of depots and maximum quantities of dangerous goods to be kept at any one time.

Depot	Type of depot	Storage	Dangerous goods	3
number	(see over)	capacity	Product being stored	C & C Office use only
1	UNDER CROUND TANK	15000	MINERAL SPIRIT	
2				
3				
4				
5				
6				7
7				
8		W/W/ / - V/W W		-
9				
10		·		
11				
12	5			

Name of company supplying flammable liqui	d (if any)	SHEZL		
Have premises previously been licensed?	YES.			
If known, state name of previous occupier	ABOVE		Licence No.	14030
Sign	ature of applicant	Hickardon	Date	31.1.80

For external explosives magazine(s), please fill in side 2.

FOR OFFICE USE ONLY CERTIFICATE OF INSPECTION

. 4	PAYMOND	CHARLES	n'LRM	being	an Inspector und	er the Dangerous	Goods Act
975	, do hereby certify	that the premises	described above	do comply with	the requirements	of the Dangerous	Goods Act.
975	, and the Dangero	ous Goods Regulati	on with regard t	to their situation	and construction	for the keeping of	of dangerous
pood	s of the nature and	d in the quantity so	ecified.	*			

Siguature of Inspector ...

Date 6. 2.60.

T 61G 1 0 WEST SOVERWENT PRINTER

ame of O	ccupier	(Surname	Richards)	on Pty	LIMI C	ea		(First	Names)		
rading N	ne (if any)				<u> </u>							
ostal Addr	ess	P.O. 1	Box 288,	PENR	ITH				Pos	stcode	275	50
ddress of emises in epot or de tuated	which the	Richmo	ond Road	I, MARSI	DEN PA	RK			Pos	stcode		
ccupation		contr	actors									
ature of P	remises	depot	NAT Y		,							
rticulars any one t		on of depots	and maxim	ium quanti	ities of in	ıflamm	able liq	uid and	or dan	gerous	goods	to be kep
	0-2-0-4	PLEA	ASE SKETC	CH SITE O	N BACK	OR AT	ТАСН	PLAN				
A ANGELOS DE	Con	struction of depo	ts *	Inflamma	ble Liquid			Dan	gerous Go	ods	20.00	
Depot No.	Walls	Roof	Floor	Mineral spirit litres	Mineral oil litres	Class 1 litres	Class 2 litres	Class 3 kg	Class 4 m3	Class 5A# litres	Class 5B# litres	Class 9 litres
1	under	ground to	nk	15000								
2	under	ground to	nk	15000			ļ					
3					-							
4		-									-	
5												
6	-											-
7								141	JBLI	CRE	VEN	<u>UE</u>
8									61	1	25	00
9				-				1/25	- E		11	14/75
10		TOTAL		30000				Rec	ulpt. No			847
* T.	· (-			- obovec					<u></u>		- Auto-
		ks describe de			i addvegi	ouna i	anks.					
	50	apacity of tan	-		She.	11						
		pplying inflan		Id	Yes		14030	`				
		ısly been licer	3							ONT		
If known	, state name	of previous of	ccupier	Fin sate.	OBW	LLCI A	TITLEC	RIC	LAKUS	ON		
		Signature of	applicant	879	ichan	dro.	- e-		Da	te _ 😅	30-7	1. 21
			13	t.								
		5.0	CDDT	TIFICATE	OF INCO	ECTIO	N					
	PU	10/	CERT	TRICATE	OF INSP	ECHO	IN		¥ ¥	oven menosce 12		under t
Y												

Signature of Inspector

1 30. 7.72

Mineral Collegiates kerosene, mineral turpentine and white spirit (for cleaning), and compositions containing same relineral Spirit—includes petrol, benzene, benzelene, benzelene, benzel and naphtha, and compositions containing same.

Dangerous Goods-

and nature specified.

Class i.—Acetone, amyl acetate, butyl acetate, carbon bisulphide; any combination of substances of an inflammable character suitable for use as an industrial solvent and having a true flashing point of less than 73 degrees Fahrenheit.

Class 2.—Nitro-cellulose (also known as "pyroxylin" and "collodion cotton") moistened with an alcohol, butyl alcohol (also known as "butanol"), methylated spirits, vegetable turpentine; and any liquid or solid containing methylated spirits, having a true flashing point of less than 150 degrees Fahrenheit.

Class 3.-Nitro-cellulose product.

Class 4 -- Compressed or dissolved acetylene contained in a porous substance.

DIRECTIONS

1. Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, No. 16 Grosvenor Street, Sydney (Box 48, G.P.O.), and must be accompanied by the prescribed fee, as set out hereunder:—

Registration of Premises (Fee £1 10s. Cd. p.a.).—For quantities not exceeding 300 gallons of mineral oil and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallons of mineral spirit, if kept in separate depots; or 500 gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an underground tank depot.

In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes 1 and 2 may be kept under the like conditions; reading Dangerous Goods of Class 1 for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil.

Store License, Div. A (Fee, £3 5s. 0d. p.a.).—For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or mineral spirit, and/or Dangerous Goods of Classes I and 2.

Store License, Div. B (Fees, See Regulation 7).—For quantities exceeding 4,000 gallons of mineral and/or mineral spirit, and/or dangerous goods of Classes I and 2, and/or dangerous goods of Classes 3.

For the keeping of Dangerous Goods of Classes 3 and/or 4. (£7 18s. 0d. p.a.).

2. The certificate of inspection at foot hereof must be signed by an Inspector under the Inflammable Liquid Act, 1915 (as amended), or Police Officer, or other officer duly authorised in that behalf, and where the premises are situated outside the Metropolitan Area of Sydney, it is requested that such certificate be obtained prior to forwarding application.

in full of occupier			RICHA	ABON.	0.	CHAID.	ALFA	E.
oation ty of the premises in which	the depot or dep	oots are situated	No. or Na	me	# AM SO BOOK - AMERICAN - 1 - 1	POAD		A Minister of Mini
	att.	2	Town		EN. A	PARK.		
		round tank depot?	> A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-	The same of the sa		***************************************		
ticulars of construction of	depots and maximu	um quantities of infla	mmable liqui	d and or Dar	ngerous Good	ds to be kep	ot at any or	ne time.
Const	ruction of Depots	.	Inflammal	ole Liquid		Dangero	us Goods	
Walls .	Roof	Floor	Mineral Spirit Gallons	Mineral Oil Gallons	Class I Gallons	Class 2 Gallons	Class 3 lb.	Class 4 cub. ft.
Modergo	ound to	uk	3000	No. of Miles and Associated States				
			3000	**************************************		V Printer a Marine and Control of the Control of th		muoremuse ~
•				Bla	150-		PAR	were .
	9	A	Public	Revenue	Account			(sog)
			(Date)	20.4	0000	unossy.	annersy	stidu#
			Rece	ipt No.	8010	- 1		
		-		TERROR TILL THE REPORT	-			
Application.		Sig		4.1	O Rice	Laro /3/6	wan	
Act 1915 (as amende	my 15 a	seut	· *** *** * * **** **** *** *** *** ***	being	g an Inspe	ctor unde	er the in	flammable suitable
	e of premises (Dwelling, on ineral spirit be kept in a ticulars of construction of Walls .	e of premises (Dwelling, Garage, Store, etc.) nineral spirit be kept in a prescribed undergoticulars of construction of depots and maximum. Construction of Depots Walls Roof Application	pation ty of the premises in which the depot or depots are situated e of premises (Dwelling, Garage, Store, etc.) mineral spirit be kept in a prescribed underground tank depot? ticulars of construction of depots and maximum quantities of inflaticulars of construction of Depots Walls . Roof Floor Walls . Roof Floor Signature of Application Signature of Application Signature of Certificate O	pation	construction of Depots Walls Roof Floor Spirit Gallons Walls Roof Floor Spirit Gallons Whiteral Spirit Gallons Whiteral Spirit Gallons Construction of Depots Application Signature of Applicant Signature of Applicant Signature of Applicant Certificate Of Inspection Depose Inflammable Liquid Wineral Spirit Gallons Certificate Of Inspection Certificate Of Inspection Depose Inspection Certificate Of Inspection Certificate Of Inspection Depose Inspection Signature of Applicant Certificate Of Inspection Depose Inspection Signature Of Applicant Depose Inspection Signature Of Inspection Depose Inspection Certificate Of Inspection Depose Inspection Signature Of Applicant Depose Inspection Signature Of Applicant Depose Inspection Signature Of Inspection Depose Inspection Signature Of Applicant Depose Inspection Signature Of Applicant Depose Inspection Signature Of Applicant Depose Inspection Certificate Of Inspection Depose Inspection Certificate Of Inspection Depose Inspection Signature Of Applicant Depose Inspection Certificate Of Inspection Depose Inspection Depo	Signature of Applicant Sation Corrected No. or Name Street No. or Name Street Mars DEN Show 17 Ary	pation ty of the premises in which the depot or depots are situated ty of the premises (Dwelling, Garage, Store, etc.) e of premises (Dwelling, Garage, Store, etc.) mineral spirit be kept in a prescribed underground tank depot? Construction of Depots Construction of Depots Inflammable Liquid Walls Roof Floor Mineral Spirit Gallons Gallons Gallons Class Class Class Class Calson Class Class Callons Class Callons Class Class Callons Class Class Class Class Class Class Callons Class Class	Section Contracted Street

Signature of Inspector

[PLEASE TURN OVER

EXPLANATORY

28-2-61

Mineral Oil—includes kerosene, mineral turpentine and white spirit (for cleaning), and compositions containing same. Mineral Spirit—includes petrol, benzene, benzelene, benzelene, benzelene, and compositions containing same.

Dangerous Goods-

1. Name in full of occupier

and nature specified.

Inflammable Liquid-

Class 1.—Acetone, amyl acetate, butyl acetate, carbon bisulphide; any combination of substances of an inflammable character suitable for use as an industrial solvent and having a true flashing point of less than 73 degrees Fahrenheit.

Class 2.—Nitro-cellulose (also known as "pyroxylin" and "collodion cotton") moistened with an alcohol, butyl alcohol (also known as "butanol"), methylated spirits, vegetable turpentine; and any liquid or solid containing methylated spirits, having a true flashing point of less than 150 degrees Fahrenheit.

Class 3.—Nitro-cellulose product.

Class 4.-Compressed or dissolved acetylene contained in a porous substance.

1. Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, No. 16 Grosvenor Street, Sydney (Box 48, G.P.O.), and must be accompanied by the prescribed fee, as set out hereunder:-

Registration of Premises (Fee £1 10s. 0d. p.a.).-For quantities not exceeding 300 gallons of mineral oil and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallons of mineral spirit, if kept in separate depots; or 500 gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an under-

In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes I and 2 may be kept under the like conditions; reading Dangerous Goods of Class I for the words Mineral Spirit and Dangerous, Goods of Class 2 for the words Mineral Oil.

Store License, Div. A (Fee, £3 5s. 0d. p.a.).—For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or mineral spirit, and/or Dangerous Goods of Classes I and 2.

Store License, Div. B (Fees, See Regulation 7).—For quantities exceeding 4,000 gallons of mineral and/or mineral spirit, and/or dangerous goods of Classes I and 2, and/or dangerous goods of Classes 3.

For the keeping of Dangerous Goods of Classes 3 and/or 4. (£7 10s. 0d. p.a.).

2. The certificate of inspection at foot hereof must be signed by an Inspector under the Inflammable Liquid Act, 1915 (as amended), or Police Officer, or other officer duly authorised in that behalf, and where the premises are situated outside the Metropolitan Area of Sydney, it is requested that such certificate be obtained prior to forwarding application.

	of premises (Dwelling, eral spirit be kept in) rground tank depot	Town	lej	pot fes	En.	12.1	N.
6. Particu		of depots and maxim	mum quantities of infla	mmable liquic		gerous Goo			ne time.
Depot No.	Walls	Roof	Floor	Mineral Spirit Gallons	Mineral Oil Gallons	Class I Gallons	Class 2 Gallons	Class 3 lb.	Class 4 cub. f
1 2	Mollings	rained c	Touch !	3000	Description of the same of the section of			1	pole
3		And the second of the second o				ti mana and a mana and a mana a	Public in	onesiet A	CONT.
5	•	2			mount of the second of the second of		(Date) 2	1.7.6	2197
7		Date of the Control o						Na-	
9		wenny	manufacture and the state of th	PP AND THE PROPERTY OF THE PROPERTY OF	Maria de la companya	AR)			TADALICY
			Cia	nature of /	A police	Lic.	had	dso	w

Liquid Act, 1915 (as amended), do hereby certify that the premises or store herein referred to and described is suitable with regard to its situation and construction for the safe keeping of inflammable liquid and/or dangerous goods in quantity

Signature of Inspector.

being an Inspector under the Inflammable

[PLEASE TURN OVER

Goods, in accordance with the provisions of the Inflammable Liquid Act, 1915-53, for the ensuing year.

EXPLANATORY

Inflammable Liquid-

Mineral Oil—includes kerosene, mineral turpentine and white spirit (for cleaning), and compositions containing same. Mineral Spirit—includes petrol, benzene, benzelen, benzelen, benzelen, and compositions containing same.

Dangerous Goods-

- Class 1.—Acetone, amyl acetate, butyl acetate, carbon bisulphide; any combination of substances of an inflammable character suitable for use as an industrial solvent and having a true flashing point of less than 73 degrees Fahrenheit.
- Class 2.—Nitro-cellulose (also known as "pyroxylin" and "collodion cotton") moistened with an alcohol, butyl alcohol (also known as "butanol"), methylated spirits, vegetable turpentine; and any liquid or solid containing methylated spirits, having a true flashing point of less than 150 degrees Fahrenheit.

Class 3.-Nitro-cellulose product.

Class 4.-Compressed or dissolved acetylene contained in a porous substance.

DIRECTIONS

- 1. Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department. Goldsbrough Mort Bldg., 11 Loftus Street, Circular Quay, Sydney (Box 48, G.P.O.), and must be accompanied by the prescribed fee. as set out hereunder:—
 - Registration of Premises (Fee £1 10s. 0d. p.a.).—For quantities not exceeding 300 gallons of mineral oil and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallons of mineral spirit, if kept in separate depots; or 500 gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an underground tank depot.
 - In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes I and 2 may be kept under the like conditions; reading Dangerous Goods of Class 2 for the words Mineral Oil.
 - Store License, Div. A (Fee, £3 5s. 0d. p.a.).—For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or mineral spirit, and/or Dangerous Goods of Classes I and 2.
 - Store License, Div. B (Fees, See Regulation 7).—For quantities exceeding 4,000 gallons of mineral oil and/or mineral spirit, and/or dangerous goods of Classes I and 2, and/or dangerous goods of Classes 3.

 For the keeping of Dangerous Goods of Classes 3 and/or 4. (£7 10s. 0d. p.a.).
- 2. The certificate of inspection at foot hereof must be signed by an Inspector under the Inflammable Liquid Act, 1915-1953, or Police Officer, or other officer duly authorised in that behalf, and where the premises are situated outside the Metropolitan Area of Sydney, it is requested that such certificate be obtained prior to forwarding application.

- 0 - L	1/2
2. Occupation	Contractors
Str ARVIN Str	reet Richmona Ra Town Larsden Fark
4. Nature of premises (Dwelling, Garage, Store, etc.)	xeelling
5. Will mineral spirit be kept in a prescribed underground tank depot?	

	Cons	struction of Depots.		Inflammab	le Liquid.	10.79	Dangerou	s Goods	
	Walls.	Roof.	Floor.	Mineral Spirit. Gallons,	Mineral Oil, Gallons,	Class 1. Gallons.	Class 2. F Gallons.	Class 3, lb.	Class 4. cub. ft
	Muaea	g rown	defruit	2000			-,10	AO	
-						GUSF	ENS	17	
-	- (E.			Phi	2-1-	1.0	9
						-7	1 1	1126	00
		t.A.	SECRED	CCOUNT		(Date	M 810-	1	
	MANUFORM TO SERVICE AND ADMINISTRATION OF THE SERVICE AND ADMINISTRATION O	PUBLIC	SFERED REVENUE	9,		Fieces			- 1
		4	1-190	96					-
				1					(4

	20-21	S	ignature of Appli	cant 2	ovolasil	
Date of Application	x r ~	1929	Postal Add	ress Rall	yeone	Till of
		CERTIFICATE C	OF INSPECTION,	7	Maria de la Companya	P.
'd Act, 1915–53, do he	aroby cartify that th		tora baraia mafara	being an Insp	ector under	the Inflammable

Signature of Inspector....

APPENDIX B3

OEH RECORDS

You are here: <u>Home</u> > <u>Contaminated land</u> > Record of notices

Contaminated land - record of notices

Record under section 58 of the Contaminated Land Management Act 1997

This record is maintained by OEH in accordance with Part 5 of the $\underline{\text{Contaminated Land}}$ $\underline{\text{Management Act 1997}}$ (CLM Act).

The record does provide

- a record of written notices issued by OEH under the CLM Act, including preliminary investigation orders.
- ✓ the names of the sites, owners or occupiers at the time of OEH action in relation to the site
- copies of site audit statements (SAS) provided to OEH under section 52 of the CLM Act and relating to significantly contaminated land.

The record does not provide

- a record of all contaminated land in NSW. <u>See frequently</u> <u>asked questions</u>
- a list of <u>notifications of contamination</u> that OEH receives.
- the names of the sites, owners or occupiers if it changes after OEH action in relation to the site.
- full copies of <u>agreed</u> management
- **x** some <u>personal information</u>.

... more about the CLM record of notices

From 1 July 2009 there were changes to the terminology of certain OEH actions under the CLM Act. See the <u>list of these changes</u>.

The record includes notices issued under sections 35 and 36 of the Environmentally Hazardous Chemicals Act 1985. These sections have been repealed. These notices are treated by the CLM Act as management orders.

Before using the record of notices see the <u>Disclaimer and terms of use</u>.

As at Tuesday, 6 December 2011 there are 919 notices in the record relating to 327 sites.

Show me the entire record or Search the record

6 December 2011

You are here: <u>Home</u> > <u>Contaminated land</u> > <u>Record of notices</u>

Search results

Your search for: LGA: Blacktown City Council Matched 3 notices relating to 2

sites

		Search Aga	Refine Search
Suburb	Address	Site Name	Notices related to this site
Kings Park	21 Tattersall Road	Former Dow Corning Sealants Factory	1 current
Seven Hills	27 Powers Road	Ma-Refine Oils Seven Hills	2 current
Page 1 of 1			

6 December 2011

You are here: <u>Home</u> > <u>Environment protection licences</u> > <u>POEO Public Register</u> > <u>Search for licences</u>, <u>applications and notices</u>

Search results

Your search for: General Search with the following criteria

Suburb - Marsden Park

returned 38 results

Export to	excel	1 of 2 Page	es			Search Again
Number	· Name		Location	Туре	Status	Date
<u>7680</u>	ASSOCIATED DA		1270 RICHMOND ROAD, MARSDEN PARK, NSW 2765	POEO licence	Surrendered	12 Jul 2000
1009789	ASSOCIATED DA PTY LTD		1270 RICHMOND ROAD, MARSDEN PARK, NSW 2765	s.58 Licence Variation	Issued	16 Jul 2001
1010198	ASSOCIATED DA PTY LTD		1270 RICHMOND ROAD, MARSDEN PARK, NSW 2765	s.80 Approval of the Surrender of a Licence		14 Aug 2001
<u>6653</u>	BARTTER ENTER PTY. LIMITED		SOUTH STREET , MARSDEN PARK, NSW 2765		Surrendered	19 Apr 2000
140195	BARTTER ENTER PTY. LIMITED			Licence Transfer		23 Aug 2000
1008250	BARTTER ENTER PTY. LIMITED		SOUTH STREET , MARSDEN PARK, NSW 2765	Variation		17 Aug 2001
1014668	BARTTER ENTER PTY. LIMITED		SOUTH STREET , MARSDEN PARK, NSW 2765		Issued	12 Apr 2002
1025286	BARTTER ENTER PTY. LIMITED		SOUTH STREET , MARSDEN PARK, NSW 2765		Issued	24 Mar 2003
1079567	BARTTER ENTER PTY. LIMITED		SOUTH STREET , MARSDEN PARK, NSW 2765		Issued	01 Nov 2007
1115186	BARTTER ENTER PTY. LIMITED		SOUTH STREET , MARSDEN PARK, NSW 2765			13 Jul 2010
<u>11497</u>	BLACKTOWN WASERVICES PTY L	ASTE LIMITED	RICHMOND ROAD, MARSDEN PARK, NSW 2765	POEO licence	Issued	20 Dec 2001
1015376	BLACKTOWN WA SERVICES PTY L		RICHMOND ROAD, MARSDEN PARK, NSW 2765		Issued	03 Apr 2002
142436	BLACKTOWN WASERVICES PTY L		RICHMOND ROAD, MARSDEN PARK, NSW 2765		Approved	01 Jan 2004
1034185	BLACKTOWN WA SERVICES PTY L		RICHMOND ROAD, MARSDEN PARK, NSW 2765		Issued	24 Feb 2004
1035619	BLACKTOWN WA SERVICES PTY L		RICHMOND ROAD, MARSDEN PARK, NSW 2765		Issued	07 Apr 2004
1036931	BLACKTOWN WA		RICHMOND ROAD, MARSDEN PARK, NSW 2765		Issued	24 May 2004
1040181	BLACKTOWN WA	ASTE	RICHMOND ROAD,	s.58 Licence	Issued	25 Aug 2004

SERVICES PTY LIMITED	MARSDEN PARK, NSW 2765	Variation	
1042674 BLACKTOWN WASTE SERVICES PTY LIMITED	RICHMOND ROAD, MARSDEN PARK, NSW 2765		15 Dec 2004
1043785 BLACKTOWN WASTE SERVICES PTY LIMITED	RICHMOND ROAD, MARSDEN PARK, NSW 2765	s.58 Licence Issued Variation	07 Feb 2005
1050775 BLACKTOWN WASTE SERVICES PTY LIMITED	RICHMOND ROAD, MARSDEN PARK, NSW 2765		14 Jul 2006
			1 <u>2</u>

1 <u>2</u>

06 December 2011

APPENDIX C

ASSESSMENT CRITERIA OF CONTAMINATION ASSESSMENT

12576/1-AA

Assessment Criteria for Contamination Assessment

ASSESSMENT CRITERIA FOR CONTAMINATION ASSESSMENT

Assessment Criteria for Soil samples

The guidelines used for soil samples in this assessment were as follows;

- The National Environment Protection (Assessment of Site Contamination) Measure (NEPM, 1999) in the National Environment Protection Council (NEPC) publications provide risk-based Health Investigation Levels (HIL) for selected organic and inorganic chemicals in Table 5-A of Schedule B(1)

 Guideline on the Investigation Levels for Soil. These levels are provided for a variety of exposure settings.
- As the site is proposed for residential subdivision development, where lawns and domestic gardens
 could be established, with regard to human health, analytical results are assessed against risk based
 health investigation guidelines appropriate for residential with access to soil (HIL 'A').
- With regard to the protection of the environment, the provisional phytotoxicity based investigation levels (PPBIL) published in the Guidelines for the NSW Site Auditor Scheme (NSW DEC 2006) and Ecological Investigation Levels (EIL) published in the NEPM for inorganics are used.
- The Guidelines for Assessing Service Station Sites (NSW EPA, 1994) provide guidance regarding TPH and BTEX.

The adopted assessment criteria are presented in the following table.

Contaminant	Asses	sment Criteria	(mg/kg)	Source
	HIL 'A'	PPBIL/EIL	NSW EPA	
Inorganics				
Metals				
Arsenic	100	20	-	NEPM, 1999; NSW DEC, 2006
Cadmium	20	3	-	NEPM, 1999; NSW DEC, 2006
Chromium (III)	120,000	400	-	NEPM, 1999; NSW DEC, 2006
Copper	1000	100	-	NEPM, 1999; NSW DEC, 2006
Lead	300	600	-	NEPM, 1999; NSW DEC, 2006
Mercury	10 / 15	1 ^a	-	NEPM, 1999; NSW DEC, 2006
(Methyl / Inorganic)				
Nickel	600	60	-	NEPM, 1999; NSW DEC, 2006
Zinc	7,000	200	-	NEPM, 1999; NSW DEC, 2006
Phenols (Total)	8,500	-	-	NEPM, 1999
Organics				
TPH/BTEX				
C ₆ to C ₉ Fraction	-	-	65	NSW EPA, 1994
C ₁₀ to C ₃₆ Fraction	-	-	1,000	NSW EPA, 1994
Benzene	-	-	1	NSW EPA, 1994
Toluene	-	-	1.4	NSW EPA, 1994
Ethylbenzene	-	-	3.1	NSW EPA, 1994
Total Xylenes	-	-	14	NSW EPA, 1994
PAH				
Benzo(a)pyrene	1	-	-	NEPM, 1999
Total PAH	20			NEPM, 1999

i

12576/1-AA Assessment Criteria for Contamination Assessment

Contaminant	Asses	sment Criteria	(mg/kg)	Source
	HIL 'A'	PPBIL/EIL	NSW EPA	
OCP				
Aldrin + Dieldrin	10	-	-	NEPM, 1999
Chlordane	50	-	-	NEPM, 1999
DDT+DDD+DDE	200	-	-	NEPM, 1999
Heptachlor	10	-	-	NEPM, 1999
PCB (Total)	10	-	-	NEPM, 1999

a: Total Mercury

In order to detect any potential "hot spots" of contamination within an individual composite sample, an adjusted HIL'A' / PPBIL is recommended for assessment of results for individual composite samples, based on Method 1, Section 6 of the EPA "Sampling Design Guidelines" 1995. The Adjusted PPBIL / HIL'A', presented in the applicable tables, were calculated by dividing the PPBIL / HIL'A' by three (i.e. three sub-samples comprised the composite). Individual composite samples were assessed against the adjusted PPBIL / HIL'A'.

If the concentration of an analyte for a composite sample is in excess of the Adjusted PPBIL / HIL'A', then all sub-samples of the failed composite samples will be analysed individually. The purpose of this is to detect potentially contaminated sub-samples within the failed composite sample.

For discrete samples, the individual concentrations of analytes were assessed against the PPBIL and HIL'A', or the suggested Levels in the EPA service station guidelines.

For asbestos assessment, the site must be free of asbestos-cement pieces and no asbestos fibre detected in the soils.

The site (or study area) will be deemed contaminated or containing contamination "hot spots" if the above criteria are unfulfilled. Further investigation at and/or in the vicinity of the contaminated area/locations, remediation and/or management will be recommended if the area of concern is found to be contaminated or contain contamination "hot spots".

Assessment Criteria for Groundwater

The "Australian and New Zealand Guidelines for Fresh and Marine Waters" 2000, published by the Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), is adopted for assessing water quality.

In order to determine whether the groundwater will impact on aquatic life within fresh water aquatic ecosystems, the groundwater test results were assessed against the available Trigger Values for a slightly / moderately disturbed freshwater system, at protection level of 95% of species, which are extracted from the abovementioned guidelines.

The groundwater test results were also assessed against the available Long-term and Short-term Trigger Values for irrigation water, available guideline values for Livestock Drinking Water and water for recreational purposes, which are extracted from the abovementioned guidelines.

12576/1-AA Assessment Criteria for Contamination Assessment

In addition, the groundwater test results were assessed against the available health levels for drinking water, extracted from the "Australian Drinking Water Guidelines" 2004, published by the National Health and Medical Research Council (NHMRC) in collaboration with the Natural Resource Management Ministerial Council (NRMMC).

There are no reliable assessment criteria for Total Petroleum Hydrocarbons in ANZECC & ARMCANZ Guidelines 2000; reference has therefore been made to Airports (Environment Protection) Regulations 1997 (compiled and prepared on 28 May 2004). The accepted limits (for fresh water) of 150 μ g/L (C_6 - C_9) and 600 μ g/L (C_9) detailed in that Regulations are considered applicable for the protection of fresh water.

The adopted assessment criteria are presented in Tables L to Q in Appendix J.

APPENDIX D

TEST PIT EXCAVATION LOGS & EXPLANATORY NOTES SAMPLE LOGS – TABLE 1 ENGINEERING LOGS – MONITORING WELLS

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 1

Location: North West Growth Centre, Marsden Park Date: 27/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots F-St M=PL CL-CI Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M=PL St CLAY, high plasticity, yellow-brown, trace of DS СН CLAY, high plasticity, pale grey, trace of M≤PL St-VSt Possible Residual ironstones СН CLAY, high plasticity, pale grey, with ironstones M<PL DS and shale fragments Ŋ Test Pit No 1 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No:** 2

Location: North West Growth Centre, Marsden Park Date: 28/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M=PL F-St Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M=PL St-VSt CLAY, high plasticity, yellow-brown, with ironstones DS СН CLAY, high plasticity, pale grey, trace of M=PL VSt DS ironstones Ŋ Test Pit No 2 terminated at 2.5m

form no. 001 version 04 - 05/11

Winten Property Group Job No: 12576/1 Client:

Project: Marsden Park Precinct **Pit No**: 3

Location: North West Growth Centre, Marsden Park **Date:** 31/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M<PL F-St Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones, with river gravels M<PL St CLAY, high plasticity, yellow-brown, trace of ironstones DS/DB Sandy CLAY, medium plasticity, light grey, with VSt ironstones DS Ŋ Test Pit No 3 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 4

Location: North West Growth Centre, Marsden Park Date: 28/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M<PL F-St Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M<PL St CLAY, high plasticity, yellow-brown, trace of ironstones DS СН CLAY, high plasticity, pale grey, with ironstones DS Ŋ Test Pit No 4 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 5

Location: North West Growth Centre, Marsden Park Date: 28/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, CL-CI trace of roots M<PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M<PL St CLAY, high plasticity, yellow-brown, trace of DS СН M≤PL St-VSt CLAY, high plasticity, pale grey, trace of ironstones DS Ŋ Test Pit No 5 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct Pit No: 6

Location: North West Growth Centre, Marsden Park Date: 28/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. M<PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M<PL CLAY, high plasticity, yellow-brown, trace of SILT, low plasticity, brown, with rounded M<PL VSt DS Alluvium DS Ŋ Test Pit No 6 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 7

Location: North West Growth Centre, Marsden Park Date: 28/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: consistency density index hand penetrometer kPa classification symbol PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. M<PL Alluvium SILT, low plasticity, brown, with rounded M<PL St Clayey SILT, low plasticity, orange, red DS DS Ŋ Test Pit No 7 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct Pit No: 8

Location: North West Growth Centre, Marsden Park **Date:** 28/10/2011 Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

ı	Exc	avatio	on d	imen	sions	:	2	2 m long	0.5 m wide	•	datum	:		1
rotomballor	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DES soil type, plasticity or par colour, secondary and n	rticle characteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0		CL-CI	Silty CLAY, low to medium brown, trace of ironstones	plasticity, grey-	M≤PL	St		Alluvium _	_
			DS		1— 1— - -		СН	CLAY, high plasticity, yello ironstones	w-brown, trace of	M=PL	St		-	_
			DS		1.5 ————————————————————————————————————		CI	Sandy CLAY, medium plas ironstones	sticity, light grey, with	M≥PL	St		Seepage @ 1.5m	
					3.5 — 4.5 — — — — — — — — — — — — — — — — — — —			Test Pit No 8 terminated at	t 2.5m				_	

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 9

Location: North West Growth Centre, Marsden Park Date: 28/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M<PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones СН M≤PL DS CLAY, high plasticity, yellow-brown, trace of St ironstones СН CLAY, high plasticity, pale grey, with ironstone M≤PL VSt and river gravels DS Ŋ Test Pit No 9 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No**: 10

Location: North West Growth Centre, Marsden Park Date: 28/10/2011
Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

	⊏qu	ibilie	iii ty	pe a	na mo	uei	•	Dacknoe		г	\.L. St	irrace	•
	Exca	avatio	on d	imen	sions	:		2 m long 0.5 m	wide	C	latum		
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characte colour, secondary and minor compor	eristic, nents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G/P/P		DS	-	0			FILL; Sand, fine to medium grained, brow with brick, concrete and sandstone fragm trace of fibro cement fragments	vn, nents,				D1 + SS1 Uncontrolled fill
	G		DS		1 — — — — — — — — — — — — — — — — — — —		CH	CLAY, high plasticity, yellow-brown, trace ironstones	e of	M <pl< td=""><td>St</td><td></td><td>Alluvium</td></pl<>	St		Alluvium
Dry			DS		2—————————————————————————————————————		СН	CLAY, high plasticity, pale grey, with iron	nstones	M <pl< td=""><td>VSt</td><td></td><td> </td></pl<>	VSt		
ry .					2.5 — — — — — — — — — — — — — — — — — — —			Test Pit No 10 terminated at 2.5m					
					_								_

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 11

Location: North West Growth Centre, Marsden Park

Date: 28/10/2011

Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

	Exc	avatio	on d	imen	sions	:		2 m long 0.5 m wide		datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0 —		ML	SILT, low plasticity, brown, with rounded ironstones	M <pl< td=""><td>St</td><td></td><td>Alluvium</td></pl<>	St		Alluvium
			DS		1—		СН	CLAY, high plasticity, yellow-brown, trace of ironstones	M <pl< td=""><td>St-VSt</td><td></td><td>Alluvium</td></pl<>	St-VSt		Alluvium
Dry			DS		1.5 ————————————————————————————————————		CI	Sandy CLAY, medium plasticity, light grey, with ironstones and pockets of sand	M <pl< td=""><td>St-VSt</td><td></td><td>- - - - - - -</td></pl<>	St-VSt		- - - - - - -
У					3 — 3.5 — — — — — — — — — — — — — — — — — — —			Test Pit No 11 terminated at 2.5m				- - - - - - - - - - - - - - - - - - -
					4.5							- - - - - -

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 12

Location: North West Growth Centre, Marsden Park Date: 28/10/2011

Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

	Exca	avatio	on d	imen	sions	:	2	2 m long	0.5 m	wide	c	latum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DEscription of particular secondary and	rticle characte	eristic, nents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0 — — — — 0.5 —		СН	TOPSOIL; Silty Clay, low trace of roots CLAY, high plasticity, yell ironstones		/	M≤PL	St		Alluvium
			20		0.5 — — — — — 1 ——		СН	CLAY, high plasticity, pale ironstones	e grey, trace of		M <pl< td=""><td>St-VSt</td><td></td><td>- - - -</td></pl<>	St-VSt		- - - -
			DS		1.5 —									- - - -
			DS											- - - -
Dry								Test Pit No 12 terminated	at 2.5m					- - -
					3—	-								
					3.5 —	-								- - - -
					4	-								- - - -
					4.5	-								- - - -
					_ _ _									

Winten Property Group Job No: 12576/1 Client:

Marsden Park Precinct Project: **Pit No**: 13

Location: North West Growth Centre, Marsden Park Date: 28/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. M<PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M≤PL F-St CLAY, high plasticity, yellow-brown, trace of ironstones DS CLAY, high plasticity, pale grey, trace of M≤PL ironstones DS Ŋ Test Pit No 13 terminated at 2.5m

form no. 001 version 04 - 05/11

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 14

Location: North West Growth Centre, Marsden Park **Date:** 27/10/2011 Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

	Exc	avatio	on d	imen	sions	:	2	2 m long	0.5 m wide	C	latum	:		ı
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESC soil type, plasticity or par colour, secondary and m	ticle characteristic, inor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0 — — — — 0.5 —		СН	TOPSOIL; Silty Clay, low potrace of roots CLAY, high plasticity, yellow ironstones	ſ	M≤PL	St		Alluvium - - -	
			DS		- - - 1—		СН	CLAY, high plasticity, pale (ironstones	grey, trace of	M <pl< td=""><td>St-VSt</td><td></td><td>- - - -</td><td>_ _ _ _</td></pl<>	St-VSt		- - - -	_ _ _ _
													- - - -	- - - -
			DS		2 —		CH	CLAY, high plasticity, pale of and shale fragments SHALE, grey, low to mediu	m strength,	M <pl< td=""><td>VSt</td><td></td><td>Possible Residual Bedrock</td><td>_</td></pl<>	VSt		Possible Residual Bedrock	_
Dry					2.5 —	-		extremely to distinctly weat Test pit No 14 terminated a bedrock					- - -	-
					3—	-							- - -	
					3.5 —	-							- - -	_ _ _
					4	-								
					4.5 —	-							- - -	
					_ _ _								- -	

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No:** 15

Location: North West Growth Centre, Marsden Park Date: 27/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M<PL Alluvium CLAY, high plasticity, yellow-brown, trace of ironstones M≤PL VSt-H Silty CLAY, medium to high plasticity, greybrown, with ironstones and siltstones DS CLAY, high plasticity, pale grey, with ironstones VSt Residual and shale fragments DS Ŋ Test Pit No 15 terminated at 2.5m

Winten Property Group Job No: 12576/1 Client:

Marsden Park Precinct Project: **Pit No**: 16

Location: North West Growth Centre, Marsden Park Date: 27/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M≤PL F-St Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones CLAY, high plasticity, pale grey, with ironstones M≤PL St-VSt DS DS Ŋ Test Pit No 16 terminated at 2.5m

Winten Property Group Job No: 12576/1 Client:

Project: Marsden Park Precinct **Pit No**: 17

Location: North West Growth Centre, Marsden Park **Date:** 31/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M<PL Alluvium SILT, low plasticity, brown, with rounded ironstones CLAY, high plasticity, yellow-brown, trace of M<PL F-St Alluvium DS/DB СН CLAY, high plasticity, pale grey, trace of M<PL St-VSt ironstones, with ironstones and river gravels DS Ŋ Test Pit No 17 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 18

Location: North West Growth Centre, Marsden Park **Date:** 28/10/2011

Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

I -4	шрше	iii ty	pc a	114 1116	uci	•	Dacking			IV.L. 3	urrace	•	J
Exc	cavatio	on d	imen	sions	:		2 m long	0.5 m w	ide	datum	:		
groundwater env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DEscription of particular secondary and	article characteris	stic, stire	consistency density index	hand penetrometer kPa	Remarks and additional observations	
G		DS		0 — —		CL-CI	TOPSOIL; Silty Clay, low trace of roots Silty CLAY, low to mediur brown, trace of ironstones	n plasticity, grey-	/ M <p< td=""><td></td><td></td><td>Alluvium</td><td>_</td></p<>			Alluvium	_
				0.5 — — — —		СН	CLAY, high plasticity, pale ironstones	e grey, trace of	M=P	L St		-	
				1— 1— — —								-	
				1.5		CI	Sandy CLAY, medium pla	isticity, light grey, v	with M≥P	L VSt	_	-	
		DS		2—————————————————————————————————————			ironstones and river grave	els				-	
Dry				2.5	7.7.7 7.2.2 7.2.2		Tank Dit No. 40 to making at a d	at 0.5m					
				_			Test Pit No 18 terminated	at 2.5m					-
				_									
				_									_
				3	1							-	
				_									
				_									_
				3.5 —									
				-									_
				_									-
				4								-	4
				_									\dashv
]								1
				_	-								4
				4.5	1							-	\dashv
					1								
				_									-

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No**: 19

Location: North West Growth Centre, Marsden Park Date: 28/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M<PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M≤PL St CLAY, high plasticity, yellow-brown, trace of ironstones DS СН M=PL CLAY, high plasticity, pale grey, trace of St DS Ŋ Test Pit No 19 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 20

Location: North West Growth Centre, Marsden Park Date: 31/10/2011

Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface :

	Exca	avatio	on d	imen	sions	:	2	2 m long 0.5 m wide)	datum	:	
aroundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0 — —		CL-CI	Silty CLAY, low to medium plasticity, grey- brown, trace of ironstones	M≤PL	F		Alluvium
			DS/DB		0.5 —		СН	CLAY, high plasticity, yellow-brown, trace of ironstones	M≥PL	F-St		_ _ _
			D3/DB		_ _ _		CI	Sandy CLAY, medium plasticity, light grey, with ironstones				_ _ _
					1—							_
					_ _ _							_ _ _
			DS		1.5 — —							Ironstones and river gravels from 1.5m — Seepage @ 1.5m —
					2							_
					_ _ _							_ _ _
						222		Test Pit No 20 terminated at 2.5m				
					_ _ _	-						_ _ _
					3 — — —							
					3.5 —							_
					_ _ _							- - -
					4							_ -
					_ _ _							- - -
					4.5 — —							

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 21

Location: North West Growth Centre, Marsden Park Date: 27/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M>PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M=PL F-St CLAY, high plasticity, pale grey, trace of ironstones DS DS Ŋ Test Pit No 21 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 22

Location: North West Growth Centre, Marsden Park

Date: 27/10/2011

Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

	Exca	avatio	on d	imen	sions	:		2 m long 0.5 m wide	· (datum	:	
groundwater	 						classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0	graphic log	ML	SILT, low plasticity, brown, with rounded				Alluvium
			DS		0.5 —		СН	ironstones CLAY, high plasticity, yellow-brown, with ironstones	M≥PL	St-VSt		Alluvium —
					1.5							- - - - - -
Dry			DS		2 — — — — —————————————————————————————		CH	CLAY, high plasticity, pale grey, trace of ironstones	M <pl< td=""><td>VSt</td><td></td><td>-</td></pl<>	VSt		-
					2.3 —			Test Pit No 22 terminated at 2.5m				_
					_							_
					_	-						_
					3 —							
					_							_
					_							_
					3.5 —							
					_							_
					_							
					_							_
					4							
					_							_
					_							_
					4.5							_
												_
					_							_
1			I		_	1		1	Ī		l	_

Winten Property Group Job No: 12576/1 Client:

Marsden Park Precinct Project: **Pit No**: 23

Location: North West Growth Centre, Marsden Park Date: 27/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. Alluvium SILT, low plasticity, brown, with rounded M≤PL CLAY, high plasticity, yellow-brown, with St Alluvium DS СН M=PL CLAY, high plasticity, pale grey, trace of St DS Ŋ Test Pit No 23 terminated at 2.5m

form no. 001 version 04 - 05/11

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 24

Location : North West Growth Centre, Marsden Park **Date :** 27/10/2011

Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface:

Equipment type and mot	iei. Dacknoe	R.L. Surface :
Excavation dimensions :		datum :
groundwater env samples PID reading (ppm) geo samples field tests depth or R.L. in meters	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition condition consistency density index Remarks and consistency density index KPa A Remarks and consistency density index A Remarks and consistency den
G DS 0	ML SILT, low plasticity, brown, with rounded	M <pl alluvium<="" f="" td=""></pl>
0.5 —	ironstones CH CLAY, high plasticity, yellow-brown, with ironstones	M≥PL St-VSt Alluvium
DS 1.5 —	CH CLAY high plasticity pale grey, with ironstones	M=PL VSt Possible Residual
DS DS	and shale fragments	M=PL VSt Possible Residual
	Test Pit No 24 terminated at 2.5m	-
lacksquare		-
3.5 —		_
lacksquare		-
lacksquare		
1		
lacksquare		
4.5		
lacksquare		-

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 25

Location : North West Growth Centre, Marsden Park **Date :** 27/10/2011

Equipment type and model: Backhoe Logged/Checked by: AN/ZA R.L. surface :

		•,				-			_		-
Exc	avatio	on d	imen	sions	:		2 m long 0.5 m wide	. (datum		
groundwater env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
G		DS		0 _		CL-CI	Silty CLAY, low to medium plasticity, grey- brown, trace of ironstones	M <pl< td=""><td>F</td><td></td><td>Alluvium</td></pl<>	F		Alluvium
				0.5 —		CH	CLAY, high plasticity, yellow-brown, trace of ironstones	M=PL	St		- - - - - -
		DS		1—		CI	Sandy CLAY, medium plasticity, light grey, with ironstones and river gravels	M≥PL	VSt		
				1.5 —							
Dry		DS		2 — — — — — — 2.5							
				_			Test Pit No 25 terminated at 2.5m				_
				_ _ _							
				3 —							
				_							_
				_							_ _
				3.5							
				_							_
				_							_
				4							_
				_							_ _
				_							_
				4.5							_
				_							_
				_							_

form no. 001 version 04 - 05/11

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 26

Location: North West Growth Centre, Marsden Park Date: 27/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. M=PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones St-VSt M>PL CLAY, high plasticity, yellow-brown, trace of ironstones, with river gravels Seepage @ 0.5m DS Sandy CLAY, medium plasticity, light grey, with DS ironstones and river gravels Test Pit No 26 terminated at 2.5m

form no. 001 version 04 - 05/11

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 27

Location: North West Growth Centre, Marsden Park Date: 27/10/2011

Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface :

	Exca	cavation dimension						2 m long 0.5 m wide		datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0 —		ML	SILT, low plasticity, brown, with rounded ironstones	M=PL	F		Alluvium —
					0.5 —		CI	Sandy CLAY, medium plasticity, light grey, with ironstones	M>PL	St-VSt		Alluvium
			DS									_ _
					1—							
l					_ _ _							_ _ _
			DS		1.5 —							_
					_ _ _							
					2 — —			Ironstones and rounded river gravels from 2.0-2.3m				Ironstones and rounded river gravels from 2.0- — 2.3m
Dry					_ _ _		СН	CLAY, high plasticity, pale grey, with ironstones	M=PL	VSt		Z.3III
_					2.5 —			Test Pit No 27 terminated at 2.5m				_
					_	-						_ _
l					3 —							_
					3.5 —							_ _
l					_ _	-						_ _
					4							
					_ _ _							
					4.5 —							
					_ 							

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 28

Location: North West Growth Centre, Marsden Park Date: 28/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M>PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M≤PL St CLAY, high plasticity, yellow-brown, trace of ironstones DS M<PL VSt-H Sandy CLAY, medium plasticity, light grey, with ironstones and river gravels Dгу DS Test Pit No 28 terminated at 1.6m due to refusal on river gravels/cobbles

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 29

Location: North West Growth Centre, Marsden Park Date: 28/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) geo samples env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M<PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M<PL St CLAY, high plasticity, yellow-brown, trace of ironstones СН CLAY, high plasticity, pale grey, trace of M<PL St-VSt DS ironstones DS Ŋ Test Pit No 29 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 30

Location: North West Growth Centre, Marsden Park Date: 28/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots, with river pebbles St-VSt M<PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones, with river gravels CLAY, high plasticity, yellow-brown, with M≥PL VSt ironstones and river gravels DS СН Seepage @ 1.1m CLAY, high plasticity, pale grey, with ironstones VSt DS Test Pit No 30 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 31

Location : North West Growth Centre, Marsden Park **Date :** 27/10/2011

Equipment type and model: Backhoe Logged/Checked by: AN/ZA R.L. surface :

	Exca	avatio	on d	imen	sions	:		2 m long 0.5 m wide	· (datum	:		
groundwater	 						classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0 —	graphic log	CL-CI	Silty CLAY, low to medium plasticity, grey- brown, trace of ironstones	M≥PL	F		Alluvium]
					0.5 —		СН	CLAY, high plasticity, yellow-brown, trace of ironstones	M≥PL	St		_	_
					_ _ _		CI	Sandy CLAY, medium plasticity, light grey, with ironstones	M>PL	VSt		Seepage @ 0.6m	_
			DS		1							_	_
					_ _ _								_
					1.5 —							_	_
							СН	CLAY, high plasticity, pale grey, with ironstones	M>PL	VSt		_	_
			DS		_ _ _								
						\mathbb{Z}		Test Pit No 31 terminated at 2.5m					_
					_ _ _	-							
					3 —	-						_	_
					3.5 —	-						_	_
					_ _ _	-							
					4							_	
					_ _ _								_
					4.5 — —							_	_

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 32

Location: North West Growth Centre, Marsden Park Date: 27/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. M<PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones Sandy CLAY, high plasticity, light grey, with M≥PL St-VSt DS DS M≤PL CLAY, high plasticity, pale grey, trace of ironstones Ŋ Test Pit No 32 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Marsden Park Precinct Project: **Pit No:** 33 Location: North West Growth Centre, Marsden Park Date: 27/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. M<PL Alluvium SILT, low plasticity, brown, with rounded M≥PL Alluvium CLAY, high plasticity, yellow-brown, trace of DS Sandy CLAY, medium plasticity, light grey, with St-VSt ironstones DS Ŋ Test Pit No 33 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 34

Location: North West Growth Centre, Marsden Park **Date:** 27/10/2011 Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

	Е	xca	avatio	on d	imen	sions	:	2	2 m long	0.5 m	n wide	c	latum	:	
	groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DES soil type, plasticity or pa colour, secondary and	rticle charac minor compo	nents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	T	G		DS		0	\prod	ML	SILT, low plasticity, brown	, with rounded	d				Alluvium
								СН	ironstones		— <i>_</i> ſ	M=PL	St		Alluvium
									CLAY, high plasticity, yello ironstones	ow-brown, trac	ce of				
						_			I onstones						_
						0.5									
				DS		_									_
						_									_
						_									_
						_		CI	Sandy CLAY, medium pla	sticity light ar	rev with	M≤PL	VSt		_
						1 —	222	-	ironstones	onony, ngin gi	oy, mai				
						_									_
						_									_
						_									
						1.5									
				DS		1.5	7.7.7								_
						_	722								_
						_									_
						_									_
						2									
						_									_
						_	777								_
						_	222								_
ý	7					_									
						2.5			Test Pit No 34 terminated	at 2.5m					
						_									_
						_									_
						_									_
						з —									
						_									_
						_									_
						_									_
															_
						3.5									
						_									
						_									_
						4									
						_									_
						_									-
						_									-
						_									_
						4.5									
						_									_
						_	1								_
1						_	1		1						_

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 35

Location: North West Growth Centre, Marsden Park Date: 27/10/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M<PL F-St Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M≥PL St CLAY, high plasticity, yellow-brown, trace of ironstones DS СН M≤PL CLAY, high plasticity, pale grey, trace of DS ironstones Ŋ Test Pit No 35 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 36

Location : North West Growth Centre, Marsden Park **Date :** 28/10/2011

Equipment type and model: Backhoe Logged/Checked by: AN/ZA R.L. surface :

	q -u.	cavation dimensions					-			-	0		-	
E	xca	avatio	on d	imen	sions	:		2 m long 0.5	m wide	(datum			
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPT soil type, plasticity or particle of colour, secondary and minor	characteristic, components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0_	,,,,,		TOPSOIL; Silty Clay, low plastici	ty, brown,					
					_		CL-CI	trace of roots Silty CLAY, low to medium plasti brown, trace of ironstones	city, grey-	M <pl< td=""><td>F-St</td><td></td><td>Alluvium</td><td>_</td></pl<>	F-St		Alluvium	_
					0.5 —		СН	CLAY, high plasticity, yellow-brovironstones	wn, trace of	M <pl< td=""><td>St</td><td></td><td></td><td>_</td></pl<>	St			_
					- -		СН	CLAY, high plasticity, pale grey, ironstones	trace of	M≤PL	St-VSt		Ironstone inclusion increases with depth	_
			DS	-	1									_
					_									_
					1.5									
					_									_
					_									
			DS	-	2									
			- 50		-									-
					_									_
					2.5									
					_									_
Dry														-
								Test Pit No 36 terminated at 3.0r	n					
					_									
					_	1								-
					3.5 —	1								
					3.5 _									
					_	1 1								_
					-	1								-
					4-]								_
					_	$\mid \cdot \mid$								_
					-	1								-
					_									
					4.5									
					-	$ \cdot $								-
					_	1								
1 1			1	1	I	1		I			1	ı		

Winten Property Group Job No: 12576/1 Client:

Project: Marsden Park Precinct **Pit No**: 37

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. M<PL Alluvium SILT, low plasticity, brown, with rounded Silty CLAY, low to medium plasticity, grey-M<PL Alluvium brown, trace of ironstones M<PL St-VSt Silty CLAY, medium to high plasticity, greybrown, with ironstones and siltstones DS/DB DS Ŋ Test Pit No 37 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 38

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. M<PL Alluvium SILT, low plasticity, brown, with rounded M<PL St Silty CLAY, low to medium plasticity, grey-Alluvium brown, trace of ironstones DS M<PL VSt Silty CLAY, medium to high plasticity, greybrown, with ironstones and siltstones CLAY, high plasticity, pale grey, trace of M<PL VSt DS/DB ironstones Ŋ Test Pit No 38 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 39

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011

Logged/Checked by: AN/ZA Equipment type and model: R.L. surface : Backhoe

	Exca	avatio	on d	imen	sions	:	2	2 m long	0.5	m wide	C	datum	:		
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DES soil type, plasticity or pa colour, secondary and	nrticle chara minor comp	onents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0	(,,,,,		TOPSOIL; Silty Clay, low	plasticity, bro	own,					
							CL-CI	trace of roots Silty CLAY, low to mediun brown, trace of ironstones	n plasticity, g	/T	M <pl< td=""><td>St</td><td></td><td>Alluvium</td><td></td></pl<>	St		Alluvium	
					0.5 —		CI-CH	Silty CLAY, medium to hig brown, with ironstones an	gh plasticity, d siltstones	grey-	M <pl< td=""><td>St-VSt</td><td></td><td>-</td><td>_</td></pl<>	St-VSt		-	_
			DS		1— 1—		СН	CLAY, high plasticity, yello ironstones	ow-brown, tr	ace of	M <pl< td=""><td>VSt</td><td></td><td>-</td><td>_</td></pl<>	VSt		-	_
					1.5 —		СН	CLAY, high plasticity, pale ironstones	e grey, trace		M <pl< td=""><td>VSt</td><td></td><td>-</td><td></td></pl<>	VSt		-	
														-	
			DS/DB		-										_ _ _
Dry					2.5	//		Test Pit No 39 terminated	ot 2 Em						-
					_			Test Pit No 39 terminated	at 2.5m						-
					_	1									\exists
					_										-
					-									_	
					3 —										\Box
					_										4
					_										4
					_	1									\exists
					3.5 —									_	_
															٦
]
					4									_	4
					_										4
					_	-									\dashv
					_										\exists
					_										\exists
					4.5									_	7
					_										
					_										4
1	1	1	ı	1 1				I		J				1	

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No:** 40

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011

Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

	Exc	avation dimension				:		2 m long	0.5 ı	m wide		datum		
groundwater							classification symbol	MATERIAL DES soil type, plasticity or par colour, secondary and n	ticle chara	cteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0 _	\prod	ML	SILT, low plasticity, brown, ironstones	with rounde	ed	M <pl< th=""><th>F</th><th></th><th>Alluvium</th></pl<>	F		Alluvium
			DS/DB		0.5 —		CI	Sandy CLAY, medium plas ironstones	ticity, light ç	grey, with	M <pl< td=""><td>St-VSt</td><td></td><td>Alluvium</td></pl<>	St-VSt		Alluvium
Dry					2.5	7.7.2		Test Pit No 40 terminated a	at 2.5m					_
					_									_
					_									_
					з —									
														_
					_									_
					3.5 —									
					_									_
					_									_
					4									_
														_
					_									_
					_									_
					4.5 —									_
					_									_
					_									_

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 41

Location: North West Growth Centre, Marsden Park

Date: 01/11/2011
Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

	Exc	cavation dimension				:		2 m long (0.5 m wid	e (datum	:	
groundwater	DO 0					graphic log	classification symbol	MATERIAL DESC soil type, plasticity or part colour, secondary and m	ticle characteristic	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0 _	Ш	ML	SILT, low plasticity, brown,	with rounded	M <pl< th=""><th>F</th><th></th><th>Alluvium</th></pl<>	F		Alluvium
	G		DS/DB		0.5 —		ML	SILT, low plasticity, brown, ironstones Clayey SILT, low plasticity,		M <pl< td=""><td>VSt-H</td><td></td><td>Becoming cemented below 1.4m</td></pl<>	VSt-H		Becoming cemented below 1.4m
Dry					2.5			Test Pit No 41 terminated a	+ 2 Em				
					_			Test Pit No 41 terminated a	11 2.5111				_
					_								_
					3								-
					_								
					_								-
					3.5 —								_
					_								_
					_								-
					_								
					4								_
					_								-
					_								
					_								_
					4.5								-
					_								_

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 42

Location: North West Growth Centre, Marsden Park Date: 01/11/2011
Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

	Exca	avatio	on d	imen	sions	:		2 m long 0.5 m wid	e	datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS DS		0.5 —		СН	TOPSOIL; Silty Clay, low plasticity, brown, trace of roots CLAY, high plasticity, yellow-brown, trace of ironstones	√ M <pl< td=""><td>St</td><td></td><td>Alluvium</td></pl<>	St		Alluvium
Dry			DS/DB		1.5 —		ML	Clayey SILT, low plasticity, orange, red	M <pl< td=""><td>St-VSt</td><td></td><td>Alluvium</td></pl<>	St-VSt		Alluvium
<u> </u>					3.5 — 4 — — — — — — — — — — — — — — — — —			Test Pit No 42 terminated at 2.5m				

form no. 001 version 04 - 05/11

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 43

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011 Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

	Excavation dimensions :						2	2 m long 0.5 m wide	C	datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0		CL-CI	Silty CLAY, low to medium plasticity, grey- brown, trace of ironstones	M <pl< td=""><td>St</td><td></td><td>Alluvium</td></pl<>	St		Alluvium
					0.5 —		CI-CH	Silty CLAY, medium to high plasticity, grey- brown, with ironstones and siltstones	M <pl< td=""><td>VSt</td><td></td><td></td></pl<>	VSt		
					— —							
			DS		1							
			DS		_							
					1.5		СН	CLAY, high plasticity, pale grey, trace of	M <pl< td=""><td>VSt</td><td></td><td>_</td></pl<>	VSt		_
					_			ironstones				_ _ _
			DS/DB		2——							_
					_ _							- -
Dry								Test Pit No 43 terminated at 2.5m				
					_							_
					3 —							_
					_							_ _ _
					3.5 —							_
					_							_
					4]
					4.5 —							
					_ _ _							

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 44

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011

Logged/Checked by: AN/ZA **Equipment type and model:** R.L. surface : Backhoe

l	Excavation dimensions :						2	2 m long	0.5 m wide	C	datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DES soil type, plasticity or pa colour, secondary and i	rticle characteristic, minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0.5 —		СН	TOPSOIL; Silty Clay, low trace of roots CLAY, high plasticity, yello ironstones CLAY, high plasticity, pale ironstones	ow-brown, trace of	M <pl M≤PL</pl 	St		Alluvium
D			DS/DB		1.5		CI	Sandy CLAY, medium pla ironstones	sticity, light grey, with	M=PL	VSt-H		- - - - - - - - - -
Dry					3.5 — 4 — 4.5 — — — — — — — — — — — — — — — — — — —			Test Pit No 44 terminated	at 2.5m				

Winten Property Group Job No: 12576/1 Client:

Project: Marsden Park Precinct **Pit No**: 45

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M<PL Alluvium CLAY, high plasticity, yellow-brown, trace of ironstones СН CLAY, high plasticity, pale grey, trace of M<PL VSt DS/DB DS Ŋ Test Pit No 45 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 46

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) geo samples env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, M=PL F-St Alluvium SILT, low plasticity, brown, with rounded ironstones DS/DB CLAY, high plasticity, pale grey, trace of M=PL St-VSt Alluvium ironstones, with ironstone and some river aravels DS Ŋ Test Pit No 46 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No:** 47

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. FILL; Silty Clay, medium plasticity, brown, with gravels, sandstones and brick fragments FILL; Clay, high plasticity, pale grey DS Silty CLAY, low to medium plasticity, grey-M<PL Alluvium brown, trace of ironstones CLAY, high plasticity, yellow-brown, trace of M<PL St CH St-VSt CLAY, high plasticity, pale grey, trace of ironstones DS/DB Ŋ Test Pit No 47 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 48

Location: North West Growth Centre, Marsden Park Date: 01/11/2011 Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

	Excavation dimensions :							2 m long 0.5 m wide	• (datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0 		CL-CI	TOPSOIL; Silty Clay, low plasticity, brown, trace of roots Silty CLAY, low to medium plasticity, grey-brown, trace of ironstones	M <pl< td=""><td>F-St</td><td></td><td>Alluvium</td></pl<>	F-St		Alluvium
			DS		0.5 —		СН	CLAY, high plasticity, yellow-brown, trace of ironstones	M <pl< td=""><td>St</td><td></td><td>_</td></pl<>	St		_
					_ _ _		CL	Silty CLAY, low plasticity, grey, with shale,	M <pl< td=""><td>VSt-H</td><td></td><td>_ _ _</td></pl<>	VSt-H		_ _ _
Dry			DS/DB		1 — — —		ÖL	ironstone and siltstone gravels	IVICI	VOLTI		
					1.5 —			Test Pit No 48 terminated at 1.3m on river boulders				_
					2 — —							
					2.5	-						_ _
					_ _ _							_ _ _
					3 —							
					3.5 —	-						_
					_ _ _	-						_ _ _
					4 —— —	-						
					_ _ _							- -
					4.5 — — —							

R.L. surface :

engineering log - excavation

Equipment type and model:

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 49

Backhoe

Location: North West Growth Centre, Marsden Park Date: 01/11/2011

Logged/Checked by: AN/ZA

	Excavation dimensions :							2 m long	0.5 m w	/ide	d	atum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DES soil type, plasticity or pa colour, secondary and r	rticle characteris	stic,	condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0 — —			TOPSOIL; Silty Clay, low page 15 trace of roots	plasticity, brown,					_
					_		СН	CLAY, high plasticity, yello ironstones	w-brown, trace o	of M	<pl< td=""><td>St</td><td></td><td>Alluvium</td></pl<>	St		Alluvium
					0.5 —		СН	CLAY, high plasticity, pale ironstones	grey, trace of	M	<pl< td=""><td>VSt</td><td></td><td></td></pl<>	VSt		
					_ _									
					1									
			DS		_ _									_
					_									_
					1.5 —									
					_									
														_
			DS/DB		- -									_
					_ _									_
Dry					2.5 —			Test Pit No 49 terminated	at 2.5m					_
					_									_
					_	-								_
					3 —									_
					_									_
					3.5 —									_
					_									-
					_									_
					4									_
					_									
					_									-
					4.5									-
					_									
					_									_

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No:** 50

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, FILL; Clay, high plasticity, pale grey DS M=PL St-VSt CLAY, high plasticity, pale grey, trace of Alluvium DS/DB Ŋ Test Pit No 50 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 51

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011

Equipment type and model: Backhoe Logged/Checked by: AN/ZA R.L. surface :

	Excavation dimensions :								datum				
	Exc	avatio	on d	imen	sions	:		2 m long 0.5 m wid	.	datum			
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0	(333)		TOPSOIL; Silty Clay, low plasticity, brown,				_	
		-			_		СН	trace of roots CLAY, high plasticity, yellow-brown, trace of	M <pl< td=""><td>St</td><td></td><td>Alluvium</td><td>=</td></pl<>	St		Alluvium	=
					_			ironstones					_
												_	
					0.5 —								_
					_								_
					_								-
					1—							_	
			DS/DB		_		CL	Silty CLAV low placticity, grov, with shalo	M <pl< td=""><td>St-VSt</td><td></td><td></td><td>4</td></pl<>	St-VSt			4
					_		OL	Silty CLAY, low plasticity, grey, with shale, ironstone and siltstone gravels	IVICIE	01 701			-
					1.5							_	_
					_								-
					_								_
			DS		2							_	_
					_								_
Dry					_								-
Ť					2.5			Test Pit No 51 terminated at 2.5m					
					_								_
ı					_								_
ı													-
ı					3 —	1						_	
					_	-							4
					_	1 1							+
					3.5 —	1						_	\Box
					_								_
					_	1 1							-
						1							
					4							_	4
					_	1							=
I						1							
					_								_
I					4.5	$\{ \ \ $						_	\dashv
					_	1							
					_								_

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No:** 52

Location: North West Growth Centre, Marsden Park **Date:** 01/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, M<PL St CLAY, high plasticity, yellow-brown, trace of Alluvium DS/DB CL M<PL VSt-H Shaley CLAY, low plasticity, grey, with shale, Residual ironstone and siltstone gravels DS Ŋ Bedrock Test Pit No 52 terminated at 2.0m on siltstone bedrock

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 53

	Loc	ation	:	Nort	th Wes		ate: 02/11/2011 ogged/Checked by: AN/ZA										
	Equ	ipme	nt ty	pe a	nd mo	del:	•	Backhoe				R.L. surface :					
	Exc	avatio	on d	imen	sions	:	2 m long 0.5 m wide										
rotemballor	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristics of colour, secondary and minor comp			moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations			
Dry	G/P G/P		DS DS/DB		0.5		CL-CI	FILL; Silty Clay, low to morown, with gravels, trace fragments Silty CLAY, low to medius brown, trace of ironstones CLAY, high plasticity, ye ironstones	e of concrete	grey-	M≤PL M=PL	F		Alluvium			
					3.5 — 4 — — — — — — — — — — — — — — — — —			Test Pit No 53 terminate	d at 2.5m								

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 54

Location: North West Growth Centre, Marsden Park **Date:** 02/11/2011

Logged/Checked by: AN/ZA **Equipment type and model:** R.L. surface : Backhoe

L	Excavation dimensions :						2	2 m long 0).5 m wide		datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESC soil type, plasticity or part colour, secondary and mi	icle characteristic, inor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G/P		DS		0 			FILL; Silty Clay, low to medi brown, with gravels and bric	um plasticity, k fragments				
l	G				_		CL-CI	Silty CLAY, low to medium p brown, trace of ironstones	plasticity, grey-	M <pl< th=""><th>St</th><th></th><th>Alluvium</th></pl<>	St		Alluvium
			DS		0.5 —— — —		СН	CLAY, high plasticity, yellow ironstones	r-brown, trace of	M <pl< th=""><th>St</th><th></th><th></th></pl<>	St		
					1— - -		CL	Shaley CLAY, low plasticity,	arev with shale	M <pl< th=""><th>VSt-H</th><th></th><th>Residual</th></pl<>	VSt-H		Residual
Dry			DS/DB		1.5 —		ÖL.	ironstone and siltstone grave	els		75(11		— — —
3					_	<i>777</i>		Test Pit No 54 terminated at bedrock	1.7m on siltstone				Bedrock
					_ 2—	-		Boulook					_
l					_								_
l					_								_
l					2.5	-							_
					_								_
					_								_
					3 —								_
					_	-							_
					3.5 —								-
					_								_
					_								_
					4								
					_ _								
					4.5								_
					-								-
ı													

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 55

Location: North West Growth Centre, Marsden Park **Date:** 02/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. FILL; Silty Clay, low to medium plasticity, brown, with gravels and sandstone fragments, G/P trace of fibro cement fragments FILL; Clay, high plasticity, pale grey G/P Silty CLAY, low to medium plasticity, grey- $M \leq PL$ St Alluvium DS/DB G brown, trace of ironstones CLAY, high plasticity, pale grey, trace of M≤PL St-VSt Residual ironstones DS Ŋ Test Pit No 55 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 56

Location: North West Growth Centre, Marsden Park **Date:** 02/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, CL-CI trace of roots M<PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M<PL St CLAY, high plasticity, yellow-brown, trace of DS/DB СН CLAY, high plasticity, pale grey, trace of $M \leq PL$ St-VSt ironstones, with siltstone gravel from 2.0m DS Ŋ Test Pit No 56 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 57

Location: North West Growth Centre, Marsden Park **Date:** 02/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) env samples MATERIAL DESCRIPTION depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, CL-CI trace of roots M<PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M<PL St CLAY, high plasticity, yellow-brown, trace of СН M≤PL St-VSt CLAY, high plasticity, pale grey, trace of ironstones DS/DB DS Ŋ Test Pit No 57 terminated at 2.5m

form no. 001 version 04 - 05/11

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 58

Location: North West Growth Centre, Marsden Park Date: 02/11/2011
Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

l E	qui	pme	nt ty	pe a	nd mo	del		Backhoe	,	≺.L. sι	ırtace	-
E	хса	avatio	on d	imen	sions	:	2	2 m long 0.5 m wide	C	datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0			FILL; Silty Clay, low to medium plasticity, brown, with gravels and brick fragments				
			DS		0.5 —		СН	CLAY, high plasticity, yellow-brown, trace of ironstones	M≤PL	St		Alluvium — — — — — — — — — —
			DS/DB		1 — — — — — — — — — — — — — — — — — — —		СН	CLAY, high plasticity, pale grey, trace of ironstones	M=PL	St-VSt		- - - - -
				-	_							_
					_							_
					2							
					_							_
					_							_
Dry					2.5			Test Pit No 58 terminated at 2.5m				_
					_			rest Fit No 36 terminated at 2.3m				_
					_							_
					3							_
												_
					_	-						_
					_							_
					3.5							
					_							_
					_							_
					_							_
					4							
					-							_
					_							_
					_							-
					4.5							
					_							
					_	-						_

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 59

Location: North West Growth Centre, Marsden Park **Date:** 02/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. FILL; Silty Clay, low to medium plasticity, brown, with gravels and sandstone fragments, G/P trace of asphaltic concrete G/P M≤PL CLAY, high plasticity, yellow-brown, trace of St Alluvium G ironstones DS СН CLAY, high plasticity, pale grey, trace of M≤PL St-VSt ironstones DS/DB Ŋ Test Pit No 59 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 60

Location: North West Growth Centre, Marsden Park **Date:** 03/11/2011

Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

datum

	E	Exca	avatio	on d	imen	sions	:	2	2 m long	0.5	m wide	C	datum	:	
	groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DEs	article cha	racteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
		G		DS		0 - - -		CL-CI	TOPSOIL; Silty Clay, low trace of roots Silty CLAY, low to mediur brown, trace of ironstones	n plasticity	/t	M <pl< th=""><th>F-St</th><th></th><th>Alluvium</th></pl<>	F-St		Alluvium
				DS/DB		0.5 ————————————————————————————————————		CI	CLAY, medium plasticity, ironstones	yellow-bro	wn, trace of	M≤PL	St		
						1— — — —		CI	CLAY, medium plasticity, ironstone from 1.9m	pale grey,	with	M≤PL	St-VSt		
				DS		1.5 — — —									
13	קק					- 2	222		Test Pit No 60 terminated refusal on ironstones	at 2.0m d	ue to				
						2.5 ————————————————————————————————————	-								
						3 —									
						3.5 —	-								_
						4									
						4.5 —									
						_	4								_

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 61

Location: North West Growth Centre, Marsden Park **Date:** 03/11/2011 Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

	Exca	avatio	on d	imen	sions	:	2	2 m long	0.5	m wide	•	datum	:		- 1
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DE soil type, plasticity or pactolour, secondary and	article chara	acteristic, ponents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0	****		TOPSOIL; Silty Clay, low	plasticity, bi	rown,					
					_ _		CL-CI	trace of roots Silty CLAY, low to mediur brown, trace of ironstones	m plasticity,	grey-	M <pl< td=""><td>F-St</td><td></td><td>Alluvium</td><td>\exists</td></pl<>	F-St		Alluvium	\exists
					0.5 —		CI	CLAY, medium plasticity, ironstones	yellow-brow	n, trace of	M>PL	St			\exists
					_ _										
			DS/DB		1										\exists
					_ _ _		CI	CLAY, medium plasticity, ironstones	pale grey, ti	race of	M>PL	St-VSt		Residual	_
					1.5										_
					_										-
					_										Ⅎ
l,					2	666								Dadasala	_
Dry			DS					SILTSTONE, grey, very lo extremely to distinctly we	ow to low str athered	ength, /				Bedrock	\dashv
					_			Test Pit No 61 terminated	at 2.1m on	siltstone					Ⅎ
								bedrock							
					2.5										_
					_										\exists
					_										\exists
					з—										
					_										4
					_										-
					_										╡
					3.5 —										\Box
					_										4
					_										\exists
					_										┪
					4										
					-										4
					_	-									4
					_										\exists
					4.5										-
					4.5 —										\Box
					_										4
					_	-									4

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 62

Location: North West Growth Centre, Marsden Park **Date:** 03/11/2011 Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

	Exca	avatio	on d	imen	sions	:	2	2 m long 0.5	m wide	C	datum	:		- 1
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle cha	aracteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0	(;;;;		TOPSOIL; Silty Clay, low plasticity,	brown,					
					_		CL-CI	trace of roots Silty CLAY, low to medium plasticity	ſ	M <pl< td=""><td>F</td><td></td><td>Alluvium</td><td>_</td></pl<>	F		Alluvium	_
1					_		CI	brown, trace of ironstones	/	M>PL	F-St			\exists
1					_		Oi.	CLAY, medium plasticity, yellow-bro	own, trace of	10121	1 01			\exists
1			DS/DB		0.5			ironstones					-	-1
			03/00		_									\dashv
					-		CI	CLAY, medium plasticity, pale grey	trace of	M>PL	St			\exists
					_			ironstones	, 11400 01					\exists
														\exists
					1								-	_
					-									_
					_									-
					_									_
					_									П
			DS		1.5								_	
					-									
					_									П
														П
					_		СН	CLAY, high plasticity, pale grey, wit	h ironstones	M≥PL	St		Residual	
					2			and shale fragments					=	
					_									
						\mathbf{W}								
I_{-}														
Dry					-									
					2.5			Test Pit No 62 terminated at 2.5m						
					3								_	
]								_
]								4
1					_									
1					3.5 ——								-	
1					_									_
1					_									4
					_									4
					_									4
1					4								-	4
1					_									4
1					_									4
1					_									4
1					_									-
1					4.5	-							-	\dashv
1					_									\dashv
					_									4
					_	1								\dashv

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 63

Location: North West Growth Centre, Marsden Park **Date:** 03/11/2011

Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface:

E	Exca	avatio	on d	imen	sions	:	2	2 m long 0.5 m wide	C	datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0 — —		CL-CI	TOPSOIL; Silty Clay, low plasticity, brown, trace of roots Silty CLAY, low to medium plasticity, greybrown, trace of ironstones CLAY, high plasticity, yellow-brown, trace of				Alluvium
					0.5 —— — —		CI	ironstones Sandy CLAY, medium plasticity, light grey, with ironstones	M <pl< td=""><td>St</td><td></td><td></td></pl<>	St		
			DS/DB		1— 1— —		CL	Shaley CLAY, low plasticity, grey, with ironstones and siltstones	M <pl< td=""><td>VSt</td><td></td><td>Residual</td></pl<>	VSt		Residual
Dry					- 1.5 -			Test Pit No 63 terminated at 1.5 on siltstone bedrock				Bedrock
					2 							
					2.5 —	-						_ _
												_ _ _
					- - -	-						_ _ _ _
					3.5 — — —	-						
					4							
					4.5 —							

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 64

Location: North West Growth Centre, Marsden Park **Date:** 03/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. FILL; Silty Clay, low to medium plasticity, brown, with gravels and sandstone fragments M<PL F-St Silty CLAY, low to medium plasticity, grey-Alluvium brown, trace of ironstones СН CLAY, high plasticity, yellow-brown, trace of M≤PL St G СН CLAY, high plasticity, pale grey, trace of M=PL St-VSt DS ironstones, with ironstones DS/DB Ŋ Test Pit No 64 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 65

Location: North West Growth Centre, Marsden Park **Date:** 03/11/2011 Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

	Exca	avatio	on d	imen	sions	:		2 m long 0.5 m wide	. (datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0	\bowtie		FILL; Clay, high plasticity, pale grey				_
					_	₩						_
					_	₩						
			DS		0.5	₩						_
	G					₩						_
					_	₩						_
						₩						_
	G				_	₩						_
					_		CL-CI	Silty CLAY, low to medium plasticity, grey-	M <pl< td=""><td>F-St</td><td></td><td>Alluvium</td></pl<>	F-St		Alluvium
	G				_		СН	brown, trace of ironstones CLAY, high plasticity, yellow-brown, trace of	M≤PL	St		-
			DS/DB		1.5 —			ironstones				
					_							_
					_		СН	CLAY, high plasticity, pale grey, trace of	M≤PL	St		
					2			ironstones				
					_							_
Dry					_							_
								Test Pit No 65 terminated at 2.5m				_
					_							
					_							
					3							
					_							_
					_							-
					3.5 —							
					_							-
					_							
					_							-
					4 —							
					_							_
					_							
					4.5							_
					_							

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 66

Location: North West Growth Centre, Marsden Park **Date:** 03/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. FILL; Silty Clay, low to medium plasticity, brown, with gravels and sandstone fragments M<PL Silty CLAY, low to medium plasticity, grey-Alluvium G brown, trace of ironstones M≤PL St-VSt CLAY, high plasticity, pale grey, trace of ironstones DS/DB DS Ŋ Test Pit No 66 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 67

Location: North West Growth Centre, Marsden Park **Date:** 03/11/2011

Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

	Exca	avatio	on d	imen	sions	:	2	2 m long	0.5	m wide	(datum	:		
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DES soil type, plasticity or pa colour, secondary and	rticle cha	aracteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0.5 —		CL-CI	TOPSOIL; Silty Clay, low trace of roots Silty CLAY, low to medium brown, trace of ironstones CLAY, high plasticity, pale ironstones, with ironstone fragments	n plasticity	/, grey-	M <pl m≤pl<="" th=""><th>St VSt-H</th><th></th><th>Alluvium</th><th></th></pl>	St VSt-H		Alluvium	
Dry			- 50		_			Test Pit No 67 terminated	-1.4.0					Bedrock	
					2			bedrock		Share					

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 68

Location: North West Growth Centre, Marsden Park **Date:** 03/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol hand penetrometer kPa consistency density index PID reading (ppm) geo samples env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots M<PL St Alluvium CLAY, high plasticity, yellow-brown, trace of ironstones M≤PL St-VSt CLAY, high plasticity, pale grey, trace of ironstones DS/DB Residual CLAY, high plasticity, pale grey, with ironstones and shale fragments DS Ŋ Bedrock Test Pit No 68 terminated at 2.2m on shale bedrock

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 69

Location: North West Growth Centre, Marsden Park **Date:** 03/11/2011

Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

	Exca	avatio	on d	imen	sions	:	2	2 m long	0.5	m wide	C	datum	:		1
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DEs	article char	acteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0 — — —		CL-CI	TOPSOIL; Silty Clay, low trace of roots Silty CLAY, low to mediur brown, trace of ironstones	n plasticity,	/t	M <pl< th=""><th>F-St</th><th></th><th>Alluvium</th><th>_ _ _ _</th></pl<>	F-St		Alluvium	_ _ _ _
			DS		0.5 ————————————————————————————————————		СН	CLAY, high plasticity, yell- ironstones	ow-brown,	trace of	M≤PL	St		_	
					1— - - -		СН	CLAY, high plasticity, pale ironstones	e grey, trac	e of	M≤PL	St-VSt		_	_ _ _ _
			DS/DB		1.5 —									_	_ _ _ _
					2—————————————————————————————————————		СН	CLAY, high plasticity, pale	e grey, with	ironstones	M <pl< td=""><td>VSt</td><td></td><td></td><td>_ _ _ _</td></pl<>	VSt			_ _ _ _
Dry								and shale fragments Test Pit No 69 terminated	at 2.5m						_
					- - - -	-			2.2.0						_ _ _
					- - -	-									
					3.5 —	-								_	_ _ _
					4— - -									_	
					4.5	-								_	- - - -
					_										1

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No**: 70

Location: North West Growth Centre, Marsden Park **Date:** 04/11/2011

Equipment type and model: Backhoe Logged/Checked by: AN/ZA R.L. surface :

	44.	,	,	P • •			-			_			-
E	хса	avatio	on d	imen	sions	:		2 m long (0.5 m wide	(datum		
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESC soil type, plasticity or part colour, secondary and m	icle characteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0	(333)		TOPSOIL; Silty Clay, low pl	asticity, brown,				
	G				_ _ _			trace of roots FILL; Silty Clay, medium pla gravels, sandstones	asticity, brown, with	M <pl< td=""><td></td><td></td><td></td></pl<>			
	G		DS		0.5 —		CL-CI	Silty CLAY, low to medium prown, trace of ironstones	olasticity, grey-	M>PL	F		Alluvium
					_ _ _		CI	Silty CLAY, medium plastici ironstones and siltstones	ty, grey-brown, with	M>PL	St		
					1—		011				0:1/0:		
							СН	CLAY, high plasticity, pale gironstones	grey, trace of	M≤PL	St-VSt		Residual
			DS/DB		-								_
					2								
					_								_
					_								_
					_								_
Dry					2.5			Test Pit No 70 terminated a	t 2 5m				
					_	1		restrictio 70 terminated a	1 2.5111				-
													_
					_								_
					з —								
					_	1							_
					_								_
					_								_
					3.5	-							
					_								_
													_
					_								_
					4	-							
					_								_
						1							_
					_								_
					4.5								
					_								_
					_	1							_
			I		-	1							_

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 71

Location: North West Growth Centre, Marsden Park

Date: 04/11/2011
Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

Excavation dimensions: 2 m long 0.5 m wide datum:

	Exca	avatio	on d	imen	sions	:	2	2 m long	0.5 m wide	(datum	:		- 1
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DES soil type, plasticity or pa colour, secondary and n	ticle characteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0	(777)		TOPSOIL; Silty Clay, low p	lasticity, brown,					
1					_		CL-CI	trace of roots	ſ	M <pl< td=""><td>F</td><td></td><td>Alluvium</td><td></td></pl<>	F		Alluvium	
1					-			Silty CLAY, low to medium	plasticity, grey-					
1					_	1//		brown, trace of ironstones						
					-									_
			DS/DB		0.5	7.7.2	CI	Sandy CLAY, medium plas	sticity, orange-brown,	M>PL	F-St		-	\neg
					-	23		pale grey	,, ,					
					-									
					_	222								-
					-									
ı					1 —	22							-	
1					-	22								
1					-	8	GL	Clayey GRAVEL, fine to co	arse grained, brown-	М	D-VD		Alluvium	
					_	8,96		yellow, grey, clay of low to	medium plasticity					
						8.0								
			DS		1.5 —] % 8								
						8,00								
					_	∞ °s								
					_	2.5.7	CI	Sandy CLAY, medium plas	sticity, light grey, with	M>PL	VSt		Alluvium	
						7.2.2 7.2.2		ironstones					-	
					_									_
					_	222								_
					_	223								_
l					_	233								_
Dry					2.5	7.7.2		Test Pit No 71 terminated a	ot 2 Em					
					-	-		rest Fit No 71 terminated a	at 2.5111					_
					-	1								-
					_	1								-
					_									-
					3	1							-	
					_									_
					-	1								
					-	1								
					_									
					3.5 —								-	
					_									
					_									
					_									
					4								_	
					_									_
					_									_
					_									_
					-									_
					4.5								-	
					-	$ \cdot $								_
					-									_
					_	1								_

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 72

Location: North West Growth Centre, Marsden Park **Date:** 04/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots FILL; Silty Clay, low to medium plasticity, brown, with large concrete pieces (garden decoration) St-VSt CLAY, high plasticity, pale grey, with ironstones Alluvium G and shale fragments DS/DB СН CLAY, high plasticity, pale grey, trace of M≥PL VSt Residual ironstones Ŋ DS Bedrock Test Pit No 72 terminated at 2.0m due to refusal on shale/siltstone bedrock

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No**: 73

Location : North West Growth Centre, Marsden Park **Date :** 04/11/2011

Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

Excavation dimensions: m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, CL-CI trace of roots F-St M<PL Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones CLAY, high plasticity, pale grey, with ironstones M>PL St-VSt DS/DB and shale fragments СН CLAY, high plasticity, pale grey, trace of M>PL VSt Residual DS ironstones Ŋ Test Pit No 73 terminated at 2.5m

Winten Property Group Client: Job No: 12576/1

Project: Marsden Park Precinct **Pit No**: 74

Location: North West Growth Centre, Marsden Park **Date:** 04/11/2011

Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: classification symbol consistency density index PID reading (ppm) geo samples env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, hand penetro KPa observations field tests colour, secondary and minor components. TOPSOIL; Silty Clay, low plasticity, brown, trace of roots F-St M>PL CL-CI Alluvium Silty CLAY, low to medium plasticity, greybrown, trace of ironstones M>PL St CLAY, high plasticity, yellow-brown, trace of

СН VSt CLAY, high plasticity, pale grey, with ironstones and shale fragments DS/DB D-VD Clayey GRAVEL, fine to coarse grained, brown-Alluvium yellow, grey, clay of low to medium plasticity DS 5 Test Pit No 74 terminated at 2.5m

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No**: 75

Location: North West Growth Centre, Marsden Park Date: 04/11/2011
Logged/Checked by: AN/ZA

Equipment type and model: Backhoe R.L. surface :

	⊏qu	ipme	ni ty	pe a	na mo	uei	•	Dacknoe	l	K.L. St	irrace	•
	Exca	avatio	on d	imen	sions	:	2	2 m long 0.5 m wide	· (datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
۳	G		DS		0	;;;;;		TOPSOIL; Silty Clay, low plasticity, brown,				
					_ _ _ _		CL-CI	trace of roots Silty CLAY, low to medium plasticity, grey-brown, trace of ironstones	M <pl< td=""><td>F</td><td></td><td>Alluvium —</td></pl<>	F		Alluvium —
			DS/DB		0.5 — — —		СН	CLAY, high plasticity, yellow-brown, trace of ironstones	M>PL	F-St		
					1 — -		СН	CLAY, high plasticity, pale grey, trace of ironstones	M>PL	St		<u>-</u> -
			DS		1.5		СН	CLAY, high plasticity, pale grey, with ironstones	a M>PL	St-VSt		Residual
			50					and shale fragments				
					2 — — —							
Dry								Test Pit No 75 terminated at 2.5m				
					_ _ _							
					3 — — —	-						
					3.5 —							_ _ _
					4							
					4.5							- - -
												- - -

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct **Pit No:** 76

Location: North West Growth Centre, Marsden Park **Date:** 04/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. FILL; Silty Clay, low to medium plasticity, brown, with large concrete pieces (garden decorations) M>PL Silty CLAY, low to medium plasticity, grey-Alluvium G brown, trace of ironstones M>PL F-St CLAY, high plasticity, yellow-brown, trace of DS/DB СН CLAY, high plasticity, pale grey, with ironstones Residual and shale fragments DS 5 Test Pit No 76 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No:** 77

Location: North West Growth Centre, Marsden Park Date: 04/11/2011

Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface :

	Exca	avatio	on d	imen	sions	:		2 m long 0.5 m wi	de	datum	:	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characterist colour, secondary and minor components	moisture	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0 _ _			FILL; Silty Clay, low to medium plasticity, brown, with large concrete pieces (garden decorations)				_
	G		DS/DB		0.5 — — —		СН	CLAY, high plasticity, pale grey, trace of ironstones	M>PL	F-St		Alluvium
					1— 1— —		СН	CLAY, high plasticity, pale grey, with ironstor and shale fragments	es M>PL	St-VSt		- - - - -
			DS		1.5 —							
Dry					2 — — — — — — — — — — — — — — — — — — —		СН	CLAY, high plasticity, pale grey, with ironstor and shale fragments	es M>PL	VSt		Residual
					- - - 3	-		Test Pit No 77 terminated at 2.5m				_ _ _ _
					- - -	-						_ _ _
					3.5 —	-						
					4							_ _ _
					4.5							- - -
					_							

Client: Winten Property Group Job No: 12576/1

Project: Marsden Park Precinct Pit No: 78

Location: North West Growth Centre, Marsden Park **Date:** 04/11/2011 Logged/Checked by: AN/ZA **Equipment type and model:** Backhoe R.L. surface: **Excavation dimensions:** m long 0.5 m wide datum: hand penetrometer kPa classification symbol consistency density index PID reading (ppm) geo samples env samples **MATERIAL DESCRIPTION** depth or R.L in meters graphic log Remarks and moisture condition additional soil type, plasticity or particle characteristic, observations field tests colour, secondary and minor components. FILL; Silty Clay, low to medium plasticity, brown, with gravel Silty CLAY, low to medium plasticity, grey-M<PL St Alluvium G brown, trace of ironstones Sandy CLAY, medium plasticity, light grey, M≥PL VSt DS/DB inclusion of ironstones DS Ŋ Test Pit No 78 terminated at 2.5m

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No**: 79

Location: North West Growth Centre, Marsden Park **Date:** 04/11/2011 Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

	Exc	avatio	on d	imen	sions	:	2	2 m long 0.5 m wi o	le	datum	:	
rotemballore	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characterist colour, secondary and minor components	moisture	consistency density index	hand penetrometer kPa	Remarks and additional observations
	G		DS		0 –		CL-CI	Silty CLAY, low to medium plasticity, grey- brown, trace of ironstones	M <pl< th=""><th></th><th></th><th>Alluvium</th></pl<>			Alluvium
			DS/DB		0.5 —		CI	Silty CLAY, medium plasticity, brown-red	M <pl< td=""><td>VSt</td><td>-</td><td>- - -</td></pl<>	VSt	-	- - -
					_		CI-CH	Silty CLAY, medium to high plasticity, grey-	M <pl< th=""><th>VSt</th><th>-</th><th>_</th></pl<>	VSt	-	_
					1—		OI OII	brown, with ironstones and siltstones	WINTE	Vot		- - -
					_ _ _							- - -
					1.5		01.011		_			_
			DS		- -		CI-CH	Silty CLAY, medium to high plasticity, grey, w shale fragments	ith M <pl< td=""><td>VSt-H</td><td></td><td>Residual — — —</td></pl<>	VSt-H		Residual — — —
												_
					_							_
Dry					_							_
					2.5 –	112		Test Pit No 79 terminated at 2.5m				_
					_ _ _							_
					3 —							
					_ _ _							_ _ _
					3.5 —							
					_ _ _							
					4							
					_ _ _							
					4.5 —							
					_	-						_

Winten Property Group Client: **Job No**: 12576/1

Project: Marsden Park Precinct **Pit No:** 80

Location: North West Growth Centre, Marsden Park **Date:** 04/11/2011 Logged/Checked by: AN/ZA

Equipment type and model: R.L. surface : Backhoe

	Exca	avatio	on d	imen	sions	:	2	2 m long	0.5	m wide	(datum	:		
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DE soil type, plasticity or p colour, secondary and	article cha	racteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
	G		DS		0 _			TOPSOIL; Silty Clay, low trace of roots	plasticity,	brown,					\exists
					_ _ _		CI-CL	Silty CLAY, low to mediu brown, trace of ironstone	m plasticity s	, grey-				Alluvium	
					0.5 — —		CI-CH	Silty CLAY, medium to hi shale fragments	gh plasticit	y, grey, with	M <pl< td=""><td>St</td><td></td><td>-</td><td></td></pl<>	St		-	
			20/22		_ _ 1									-	_
			DS/DB		_ _ _		CI-CH	Silty CLAY, medium to hi brown, with ironstones ar	gh plasticity nd siltstone	y, grey- s	M≥PL	St-VSt			_
					1.5 —									-	
					_ _ _		СН	CLAY, high plasticity, pal and shale fragments	e grey, with	n ironstones	M≥PL	St-VSt		Residual	_
			DS		2									_	
Dry					_ _ _										
					-2.5 –			Test Pit No 80 terminated	d at 2.5m						\exists
					_										\exists
					3 —									-	-
					_										\exists
					_										\exists
					3.5 —									_	_
					_										4
					4									-	4
					_ _										
					_ _										
					4.5 —									_	\exists
					_ _										

Project Marsden Park Precinct Job No 12576/1

Location North West Growth Centre, Marsden Park Refer to Drawing No 12576/1-AA4

Logged & Sampled by AN/JK

TABLE 1

Sample	Depth	Sample	Date	Time	Material Description	Page 1 of 1 Remarks*
Campie	(m)	Depth (m)	Date	Tillie	Material Description	Remarks
SD1	0.0-0.1	0.0-0.1	27/10/2011	-	SEDIMENT; Silty Clay, low to medium plasticity, grey-brown	
SD2	0.0-0.1	0.0-0.1	u	-	SEDIMENT; Silty Clay, low to medium plasticity, grey-brown	
SD3	0.0-0.1	0.0-0.1	28/10/2011	-	SEDIMENT; Silty Clay, low to medium plasticity, grey-brown	
SD4	0.0-0.1	0.0-0.1	01/11/2011	-	SEDIMENT; Silty Clay, low to medium plasticity, grey-brown	
SD5	0.0-0.1	0.0-0.1	01/11/2011	-	SEDIMENT; Silty Clay, low to medium plasticity, grey-brown	
SD6	0.0-0.1	0.0-0.1	04/11/2011	-	SEDIMENT; Silty Clay, low to medium plasticity, grey-brown	
AST1	0.0-0.2	0.0-0.2	31/10/2011	-	FILL; Gravelly Sand, fine to coarse grained, grey, petroleum smell, with river pebbles	
	0.2-0.4	0.25-0.4	u	-	(CL-CI) Silty CLAY, low to medium plasticity, grey, trace of ironstones	
	0.4-1.1	0.7-0.8	ű	-	(CH) Silty CLAY, high plasticity, yellow- brown, trace of ironstones	
	1.1-1.5	1.2-1.3	и	-	(ML) Clayey SILT, low plasticity, orange- grey, with inclusion of siltstones	
UST1	0.0-0.3	0.0-0.3	u	-	FILL; Gravelly Sand, fine to coarse grained, grey, petroleum smell, with river pebbles	
	0.3-1.1	0.35-0.5	ű	-	(CH) Silty CLAY, high plasticity, yellow- brown, trace of ironstones	
		0.9-1.0	"	-	(CH) Silty CLAY, high plasticity, yellow- brown, trace of ironstones	
	1.1-1.5	1.2-1.3	и	-	(ML) Clayey SILT, low plasticity, orange- grey, with inclusion of siltstones	
SP1	-	-	02/11/2011	-	STOCKPILE; Gravelly Sand, fine to coarse grained, grey, with sandstone, concrete and asphaltic concrete fragments, trace of fibro cement fragments	
SP2	-	-	04/11/2011	-	STOCKPILE; Gravelly Clay, low to medium plasticity, dark brown, dark grey	

engineering log - monitoring well

Client:Winten Property GroupJob No.: 12576/1Project:Marsden Park PrecinctBorehole No.: MW1Location:North West Growth Centre, Marsden ParkDate: 09/11/2011

Logged/Checked by: JK/AB

d	Irill rig	:				Edson R.		rface :	AHD
g	round	water	09/11/	2011	: 8.2	2 (m)			
						MATERIAL DESCRIPTION			ORING WELL
groundwater	samples	PID Reading (ppm)	depth or R.L. in meters	graphic log	classification symbol	soil type, plasticity or particle characteristic, colour, secondary and minor components.	Graphic Log		Description
			0 _			TOPSOIL: Silty Sand, fine to medium grained, brown traces of roots	,	Clay	
		N=4 1,1,3	1 —		CI	CLAY, medium plasticity, pale grey, orange-brown			
					CI	CLAY, medium to high plasticity, pale grey, traces of ironstone			
		N=20 4,9,11	3 —						
		N=24 7,9,15	_						
			4 —			SHALE, grey, extremely low strength, extremely weathered		Bentonite Sand Screen with filter:	sock

form no. MW01 version 05 - 11/11

engineering log - monitoring well

Client :Winten Property GroupJob No. : 12576/1Project :Marsden Park PrecinctBorehole No. : MW1Location :North West Growth Centre, Marsden ParkDate : 09/11/2011

Logged/Checked by: JK/AB

drill rig: Edson R.L. surface: groundwater 09/11/2011: 8.2 (m) Secondary and particle characteristic, colour, secondary and minor components. Secondary and minor componen		d/Checked by: JK		Edoor					.:!! .:	_
Selection of the property of t	АНГ	игтасе :	K.L.	Edson						
Begin by Supplied (and				2 (m)	: 8.2	2011	09/11/	water	ound	g
11 — Monitoring Well MW1 terminated at 10.0m 11 — 13 — 14 — 15 — 16 — 16 — 16 — 16 — 16 — 16 — 16				MATERIAL DESCRIPTION	c		·			L
Monitoring Well MW1 terminated at 10.0m 11 — 12 — 13 — 14 — 15 — 16 — 16 —	Description		teristic, nents.	soil type, plasticity or particle charac colour, secondary and minor compoi	classification symbol	graphic log	depth or R.L in meters	PID Reading (ppm)	samples	groundwater
Monitoring Well MW1 terminated at 10.0m 11 — 12 — 13 — 14 — 16 — 16 — 16 — 16 — 16 — 18 — 18 — 18 — 19 — 10 — 10 — 11 — 11 — 12 — 13 — 14 — 15 — 16 — 18 — 18 — 18 — 18 — 18 — 18 — 18 — 19 — 10 — 10 — 10 — 11 — 11 — 12 — 13 — 14 — 15 — 16 — 16 — 18 — 18 — 18 — 19 — 10 — 1							_			
12 — 13 — 14 — 15 — 15 — 16 — 16 — 16 — 16 — 16 — 17 — 17 — 18 — 18 — 18 — 18 — 18 — 18				Monitoring Well MW1 terminated at 10.0n			-10 -			
12 — 13 — 14 — 15 — 15 — 16 — 16 — 16 — 16 — 16 — 17 — 17 — 18 — 18 — 18 — 18 — 18 — 18							_			
12 — 13 — 14 — 15 — 15 — 16 — 16 — 16 — 16 — 16 — 17 — 17 — 18 — 18 — 18 — 18 — 18 — 18							_			
13 — 14 — 15 — 16 — — — — — — — — — — — — — — — — —							11 —			
13 — 14 — 15 — 16 — — — — — — — — — — — — — — — — —							_ 			
13 — 14 — 15 — 16 — 16 — — — — — — — — — — — — — — —										
14— 15— 16— — — — — — — — — — — — — — — — — —							12 —			
14— 15— 16— — — — — — — — — — — — — — — — — —							_			
14— 15— 16— — — — — — — — — — — — —							_			
15 — 16 — 16 —							13 —			
15 — 16 — 16 —							_			
15 — 16 — 16 —							_			
16 —							14 —			
16 —							_			
16 —							_			
							16 -			
							10 —			
							_			
							_			
							_			
							18 —			
							18 —			
							_			
							_			

engineering log - monitoring well

Client:Winten Property GroupJob No.: 12576/1Project:Marsden Park PrecinctBorehole No.: MW2Location:North West Growth Centre, Marsden ParkDate: 09/11/2011

Logged/Checked by: JK/AB

gr -	ound	water	09/11/	∠∪11	: 2.		/2011 :		
groundwater	samples	PID Reading (ppm)	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	Graphic Log	MONITORING WELL Describtion OPENSATION OPENSATION	
			0 _			FILL: Silty Sandy Clay, low plasticity, brown, traces of roots		Bentonite	
		N=4	_ _		CI	CLAY, medium plasticity, grey, red-brown			
		1,2,2	1 —						
			_						
,			_		CI-CH	Silty CLAY, medium to high plasticity, pale grey/white,		Sand	
			2 —			traces of ironstone		Screen with filter sock	
_		N=19 3,6,13	_					•	
			_			SHALE, grey, extremely low strength, extremely		•	
			з —			weathered		•	
			_					•	
			_					•	
			4					•	
			_					•	
			_						
+			- 5			Monitoring Well MW2 terminated at 5.0m	<u> -:-</u> -:-	•	
			_			-			
			_						
			6 —						
			_						
			_						
			7 —						
			_						
			_						
			8 —						
			_						
			_						
			9 — —						

form no. MW01 version 05 - 11/11

EXPLANATORY NOTES

Introduction

These notes have been provided to simplify the geotechnical report with regard to investigation procedures, classification methods and certain matters relating to the Discussion and Comments section. Not all notes are necessarily relevant to all reports.

Geotechnical reports are based on information gained from finite subsurface probing, excavation, boring, sampling or other means of investigation, supplemented by experience and knowledge of local geology. For this reason they must be regarded as interpretative rather than factual documents, limited to some extent by the scope of information on which they rely.

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on AS1726 - 1993 "Geotechnical Site Investigations". In general, descriptions cover the following properties; strength or density, colour, structure, soil or rock type, and inclusions. Identification and classification of soil and rock involves, to a large extent, judgement within the acceptable level commonly adopted by current geotechnical practices.

Soil types are described according to the predominating particle size, qualified by the grading or other particles present (e.g. sandy clay) on the following basis:

Soil Classification	Particle Size
Clay	Less than 0.002mm
Silt	0.002 to 0.06mm
Sand	0.06 to 2.00mm
Gravel	2.00mm to 60.00mm

Cohesive soils are classified on the basis of strength, either by laboratory testing or engineering examination. The strength terms are defined as follows:

Classification	Undrained Shear Strength kPa
Very Soft	Less than 12
Soft	12 – 25
Firm	25 – 50
Stiff	50 – 100
Very Stiff	100 – 200
Hard	Greater than 200

Non-cohesive soils are classified on the basis of relative density, generally from the results of standard penetration tests (SPT) or Dutch cone penetrometer tests (CPT), as below:

Relative Density	SPT 'N' Value (blows/300mm)	CPT Cone Value (q _c -MPQ)
Very Loose	Less than 5	Less than 2
Loose	5 – 10	2 – 5
Medium Dense	10 – 30	5 – 15
Dense	30 - 50	15 – 25
Very Dense	>50	>25

Rock types are classified by their geological names, together with descriptive terms on degrees of weathering, strength, defects and other minor components. Where relevant, further information regarding rock classification is given on the following sheet.

Sampling

Sampling is carried out during drilling to allow engineering examination (and laboratory testing where required) of the soil or rock

Disturbed samples taken during drilling provide information on plasticity, grain size, colour, type, moisture content, inclusions and depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thin walled sample tube (normally known as $U_{50})$ into the soil and withdrawing a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils. Details of the type and method of sampling are given in the report.

Field Investigation Methods

The following is a brief summary of investigation methods currently carried out by this Company and comments on their use and application.

Hand Auger Drilling

The borehole is advanced by manually operated equipment. The diameter of the borehole ranges from 50mm to 100mm. Penetration depth of hand augered boreholes may be limited by premature refusal on a variety of materials, such as hard clay, gravels or ironstone.

Test Pits

These are excavated with a tractor-mounted backhoe or a tracked excavator, allowing close examination of the insitu soils if it is safe to descend into the pit. The depth of penetration is limited to about 3.0m for a backhoe and up to 6.0m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

Care must be taken if construction is to be carried out near, or within the test pit locations, to either adequately recompact the backfill during construction, or to design the structure to accommodate the poorly compacted backfill.

Large Diameter Auger (e.g. Pengo)

The hole is advanced by a rotating plate or short spiral auger, generally 300mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 0.5m) and are disturbed, but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers and is usually supplemented by occasional undisturbed tube sampling.

Continuous Spiral Flight Augers

The hole is advanced by using 90mm-115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling or insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are very disturbed and may be highly mixed with soil of other stratum.

Information from the drilling (as distinct from specific sampling by SPT or undisturbed samples) is of relatively lower reliability due to remoulding, mixing or softening of samples by groundwater, resulting in uncertainties of the original sample depth.

The spiral augers are usually advanced by using a V-bit through the soil profile to refusal, followed by Tungsten Carbide (TC) bit, to penetrate into bedrock. The quality and continuity of the bedrock may be assessed by examination of recovered rock fragments and through observation of the drilling penetration resistance.

Non-core Rotary Drilling (Wash Boring)

The hole is advanced by a rotary bit, with water being pumped down the drill rod and returned up the annulus carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the feel and rate of penetration.

Rotary Mud Stabilised Drilling

This is similar to rotary drilling, but uses drilling mud as a circulating fluid, which may consist of a range of products from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (e.g. SPT and U_{50}) samples).

i

Continuous Core Drilling

A continuous core sample is obtained using a diamond tipped core barrel. Providing full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, an NMLC triple tube core barrel, which gives a core of about 50mm diameter, is usually used with water flush.

Portable Proline Drilling

This is manually operated equipment and is only used in sites which require bedrock core sampling and there is restricted site access to truck mounted drill rigs. The boreholes are usually advanced initially using a tricone roller bit and water circulation to penetrate the upper soil profile. In some instances, a hand auger may be used to penetrate the soil profile. Subsequent drilling into bedrock involves the use of NMLC triple tube equipment, using water as a lubricant.

Standard Penetration Tests

Standard penetration tests are used mainly in non-cohesive soils, but occasionally also in cohesive soils, as a means of determining density or strength and of obtaining a relatively undisturbed sample. The test procedure is described in AS1289 6.3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube under the impact of a 63kg hammer with a free fall of 769mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In a case where full penetration is obtained with successive blow counts for each 150mm of, say 4, 6 and 7 blows as;

$$N = 13$$

4.6.7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm as;

15, 30/40mm

The results of the tests can be related empirically to the engineering properties of the soil. Occasionally the test method is used to obtain samples in 50mm diameter thin walled sample tubes in clays. In these circumstances, the test results are shown on the bore logs in brackets.

Cone Penetrometer Testing and Interpretation

Cone penetrometer testing (sometimes referred to as Dutch Cone-CPT) described in this report, has been carried out using an electrical friction cone penetrometer and the test is described in AS1289 6.5.1.

In the test, a 35mm diameter rod with cone tipped end is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig, which is fitted with a hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the friction resistance on a separate 130mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are connected by electrical wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck.

As penetration occurs (at a rate of approximately 20mm per second) the information is output on continuous chart recorders. The plotted results given in this report have been traced from the original records. The information provided on the charts comprises:

- Cone resistance the actual end bearing force divided by the cross sectional area of the cone, expressed in MPa *
- Sleeve friction the frictional force on the sleeve divided by the surface area, expressed in kPa

The ratios of the sleeve resistance to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1% to 2% are commonly encountered in sands and very soft clays, rising to 4% to 10% in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range:

$$q_c$$
 (MPa) = (0.4 to 0.6) N (blows per 300mm)

In clays, the relationship between undrained shear strength and cone resistance is commonly in the range:

$$q_c = (12 \text{ to } 18)C_u$$

Interpretation of CPT values can also be made to allow estimate of modulus or compressibility values, to allow calculation of foundation settlements. Inferred stratification, as shown on the attached report, is assessed from the cone and friction traces, from experience and information from nearby boreholes etc.

This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties and where precise information or soil classification is required, direct drilling and sampling may be preferable.

Portable Dynamic Cone Penetrometer (DCP)

Portable Dynamic Cone Penetrometer tests are carried out by driving a rod into the ground with a falling weight hammer and measuring the blows per successive 100mm increment of penetration.

There are two similar tests, Cone Penetrometer (commonly known as Scala Penetrometer) AS1289 6.3.2 and the Perth Sand Penetrometer AS1289 6.3.3. Scala Penetrometer is commonly adopted by this company and consists of a 16mm rod with a 20mm diameter cone end, driven with a 9kg hammer, dropping 510mm (AS1289 Test P3.2).

Laboratory Testing

Laboratory testing is carried out in accordance with Australian Standard 1289 "Methods of Testing Soil for Engineering Purposes". Details of the test procedures are given on the individual report forms.

Engineering Logs

The engineering logs presented herein are an engineering and/or geological interpretation of the sub-surface conditions and their reliability will depend to some extent on frequency of sampling and the method of drilling. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, however, this is not always practicable or possible to justify economically. As it is, the boreholes represent only a small sample of the total sub-surface profile. Interpretation of the information and its application to design and construction should take into account the spacing of boreholes, frequency of sampling and the possibility of other than 'straight line' variations between the boreholes.

Groundwater

Where groundwater levels are measured in boreholes, there are several potential problems:

- in low permeability soils groundwater, although present, may enter the hole slowly or perhaps not at all during the investigation period
- a localised perched water table may lead to an erroneous indication of the true water table
- water table levels will vary from time to time due to the seasons or recent weather changes. They may not be the same at the time of construction as indicated in the report
- the use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole if water observations are to be made

More reliable measurements can be achieved by installing standpipes that are read at intervals over several days, or weeks for low permeability soils. Piezometers sealed in a particular stratum may be advisable in low permeability soils, or where there may be interference from a perched water table or surface water.

Engineering Reports

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, perhaps a three-storey building, the information and interpretation may not be relevant if the design proposal is changed, say to a twenty-storey building. If this occurs, the Company will be pleased to review the report and sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of sub-surface conditions, discussions of geotechnical aspects and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on bore spacing and sampling frequency.
- Changes in policy or interpretation of policy by statutory authorities.
- The actions of contractors responding to commercial pressures.

If these occur, the Company will be pleased to assist with investigation or advice to resolve the matter.

Site Anomalies

In the event that conditions encountered on-site during construction appear to vary from those that were expected from the information contained in the report, the Company requests immediate notification. Most problems are much more easily resolved when conditions are exposed rather than at some later stage, well after the event.

Reproduction of Information for Contractual Purposes

Attention is drawn to the document "Guidelines for the Provision of Geotechnical Information in Tender Documents", published by the Institute of Engineers Australia. Where information obtained from this Investigation is provided for tendering purposes; it is recommended that all information, including the written report and discussion, be made available.

In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. The Company would be pleased to assist in this regard and/or make additional copies of the report available for contract purposes, at a nominal charge.

Site Inspection

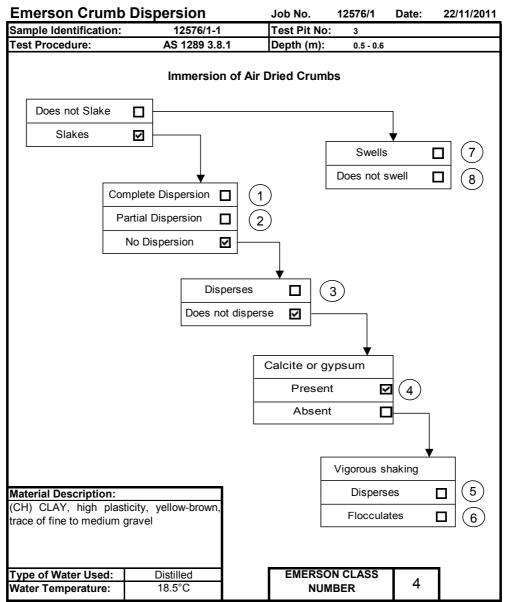
The Company will always be pleased to provide engineering inspection services for geotechnical aspects of work to which this report is related. This could range from a site visit to confirm that the conditions exposed are as expected, to full time engineering presence on site.

Review of Design

Where major civil or structural developments are proposed, or where only a limited investigation has been completed, or where the geotechnical conditions are complex, it is prudent to have the design reviewed by a Senior Geotechnical Engineer.

APPENDIX E

LABORATORY TEST RESULTS CERTIFICATES


Geotechnical

WINTEN PROPERTY GROUP LEVEL 10, 61 LAVENDER STREET MILSONS POINT NSW 2061

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

A Kench 22/11/2011

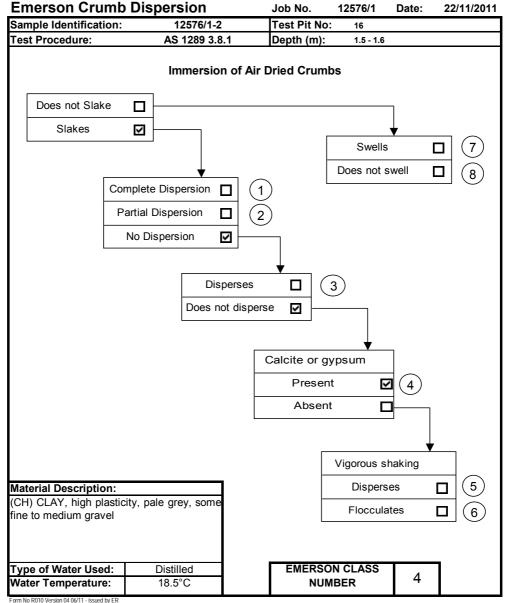
Nata Accreditation Number 2734 Corporate Site Number 2727

Approved_signatory

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751

Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777

email: info@geotech.com.au www.geotech.com.au


Prestons Laboratory: Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 Facsimile: (02) 9607 6200

WINTEN PROPERTY GROUP LEVEL 10, 61 LAVENDER STREET MILSONS POINT NSW 2061

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

A Kench 22/11/2011

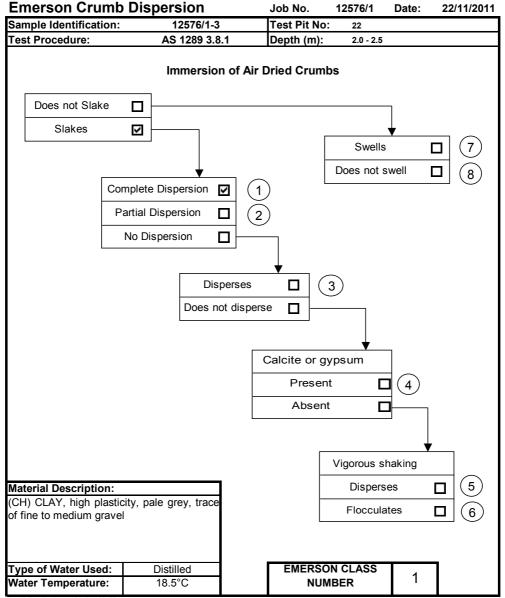
Nata Accreditation Number 2734

Corporate Site Number 2727

Approved_signatory

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751

Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777


email: info@geotech.com.au www.geotech.com.au

Prestons Laboratory: Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 Facsimile: (02) 9607 6200

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Nata Accreditation Number 2734

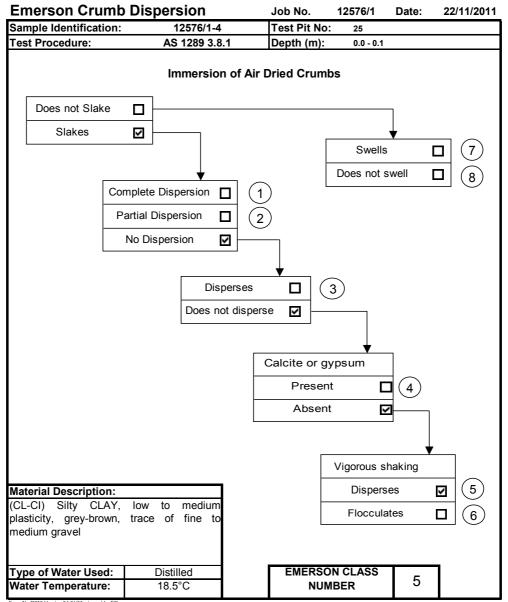
Corporate Site Number 2727

A Kench

22/11/2011

Approved_signatory

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751


Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777

email: info@geotech.com.au www.geotech.com.au

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Nata Accreditation Number 2734 Corporate Site Number 2727

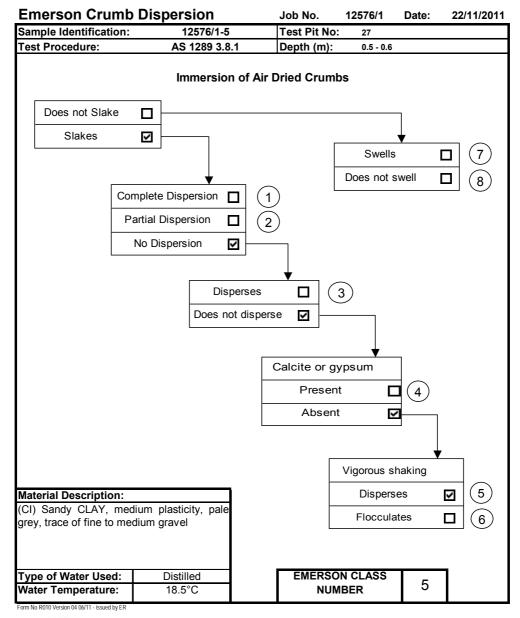
Approved signatory

A Kench

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751

Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777

email: info@geotech.com.au www.geotech.com.au


Prestons Laboratory: Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 Facsimile: (02) 9607 6200

22/11/2011

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

A Kench

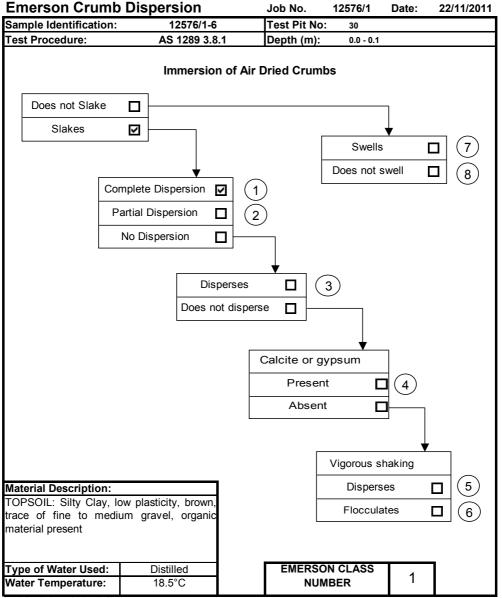
Nata Accreditation Number 2734

Corporate Site Number 2727

Approved_signatory

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751

Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777


Prestons Laboratory: Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 Facsimile: (02) 9607 6200

22/11/2011

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Nata Accreditation Number 2734

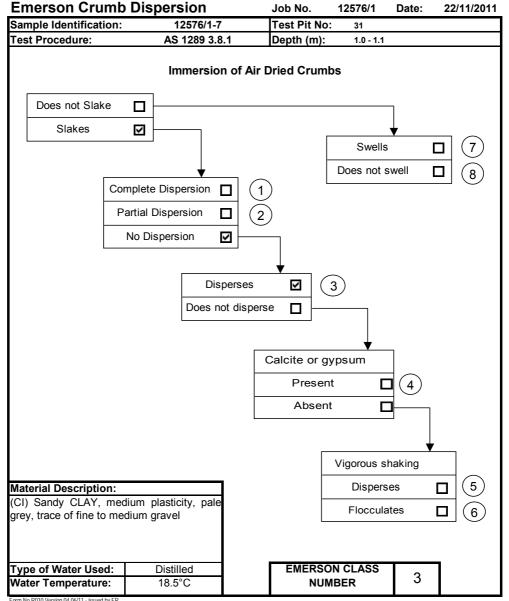
Corporate Site Number 2727

A Kench

22/11/2011

Approved_signatory

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751


Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777

Prestons Laboratory: Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 Facsimile: (02) 9607 6200

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

A Kench

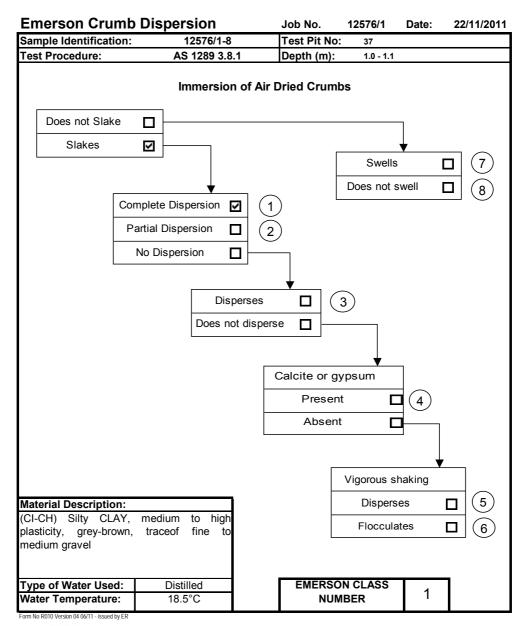
22/11/2011

Nata Accreditation Number 2734

Corporate Site Number 2727

Approved_signatory

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751


Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777

Prestons Laboratory: Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 Facsimile: (02) 9607 6200

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

NATA

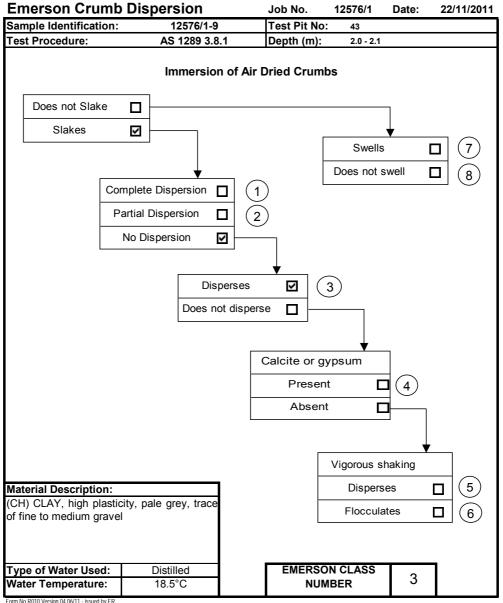
This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

A Kench 22/11/2011

Nata Accreditation Number 2734 Corporate Site Number 2727

Approved_signatory

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751


Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777

email: info@geotech.com.au www.geotech.com.au

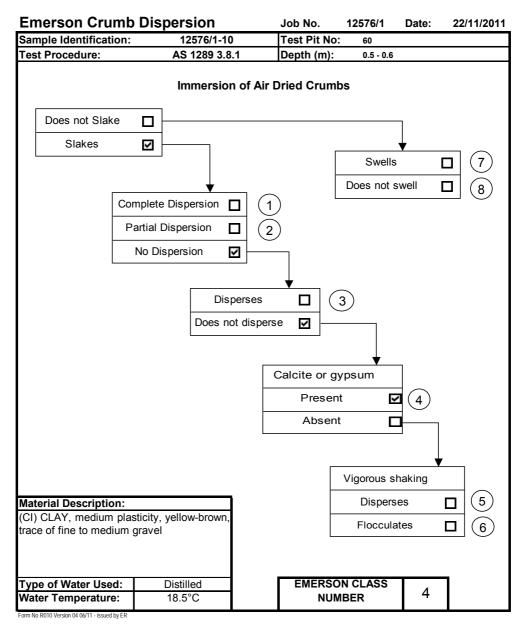
LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Nata Accreditation Number 2734 Corporate Site Number 2727

A Kench 22/11/2011

Approved_signatory


Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751

Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777 email: info@geotech.com.au www.geotech.com.au

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

This

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

My

A Kench

Prestons Laboratory:

Nata Accreditation Number 2734

Corporate Site Number 2727

Approved_signatory

Unit 4, 18-20 Whyalla Place, Prestons NSW 2170

Telephone: (02) 9607 6111 Facsimile: (02) 9607 6200

22/11/2011

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

TEST RESULTS - ATTERBERG LIMITS Test Procedure AS1289 3.1.1. 3.2.1. 3.3.1. 3.4.1

	Test Procedure AS128	19 3.1.1, 3.2.1, 3.3.1, 3.4.1	
Job No: 12576/1 Laboratory Penrith Date Tested 14/11/201	1	Tested By: Checked By:	AN AP
Sample Identification	Test Pit 4	Test Pit 13	Test Pit 18
Laboratory Number	12576/1-11	12576/1-12	12576/1-13
Depth (m)	1.0 - 1.1	1.0 - 1.1	0.0 - 0.1
Test Description			
Liquid Limit (W _L)	60%	56%	22%
Plastic Limit (W _P)	18%	16%	20%
Plastic Index (I _P)	42%	40%	2%
Linear Shrinkage (LS)	8.5%	13.5%	1.0%
Mould Length (mm)	125	125	125
Sample History	Oven Dried Dry Sieved	Oven Dried Dry Sieved	Oven Dried Dry Sieved
Material Description	(CH) CLAY, high plasticity, yellow-brown, trace of fine to medium gravel	(CH) CLAY, high plasticity, yellow-brown, trace of fine to medium gravel	TOPSOIL, silty Clay, brown organic matter present

Form No R004 Vers 11 - 06/11 - Issued by ER

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Nata Accreditation Number 2734 Corporate Site Number 2727

A Kench

9/12/2011

Approved Signatory

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751

Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777

email: info@geotech.com.au www.geotech.com.au

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

TEST RESULTS - ATTERBERG LIMITS Test Procedure AS1289 3.1.1, 3.2.1, 3.3.1, 3.4.1

	Test Procedure AS12	39 3.1.1, 3.2.1, 3.3.1, 3.4.1		
Job No: 12576/1 Laboratory Penrith Date Tested 14/11/201	1	Tested By: Checked By:	AN AP	
Sample Identification	Test Pit 40	Test Pit 61		
Laboratory Number	12576/1-14	12576/1-15		
Depth (m)	0.5 - 0.6	1.0 - 1.1		
Test Description				
Liquid Limit (W _L)	32%	43%		
Plastic Limit (W _P)	15%	18%		
Plastic Index (I _P)	17%	25%		
Linear Shrinkage (LS)	9.5%	12.5%		
Mould Length (mm)	127	127		
Sample History	Oven Dried Dry Sieved	Oven Dried Dry Sieved		
Material Description	(CL) Sandy CLAY, low plasticity, pale grey, trace of fine to medium gravel	(CI) CLAY, medium plasticity, yellow-brown, trace of fine to medium gravel		

Form No R004 Vers 11 - 06/11 - Issued by ER

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Nata Accreditation Number 2734 Corporate Site Number 2727

A Kench

9/12/2011

Approved Signatory

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751

Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777

email: info@geotech.com.au www.geotech.com.au

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

TEST RESULTS - ATTERBERG LIMITS

	Test Procedure AS1289	3.1.1, 3.2.1, 3.3.1, 3.4.1		
Job No: 12576/1 Laboratory Penrith Date Tested 07/12/201	1	Tested By: Checked By:	AN AK	
Sample Identification	Test Pit 19			
Laboratory Number	12576/1-16			
Depth (m)	0.5 - 0.6			
Test Description				
Liquid Limit (W _L)	64%			
Plastic Limit (W _P)	22%			
Plastic Index (I _P)	42%			
Linear Shrinkage (LS)	17.5%			
Mould Length (mm)	127			
Sample History	Oven Dried Dry Sieved			
Material Description	(CH) CLAY, high plasticity, yellow-brown, trace of fine to medium gravel			

Form No R004 Vers 11 - 06/11 - Issued by ER

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

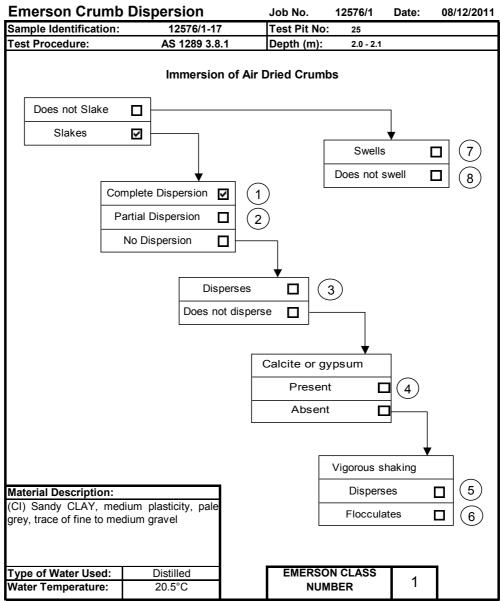
Nata Accreditation Number 2734 Corporate Site Number 2727

A Kench

9/12/2011

Approved Signatory

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751


Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777

email: info@geotech.com.au www.geotech.com.au

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

Form No R010 Version 04 06/11 - issued by ER

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Nata Accreditation Number 2734
Corporate Site Number 2727

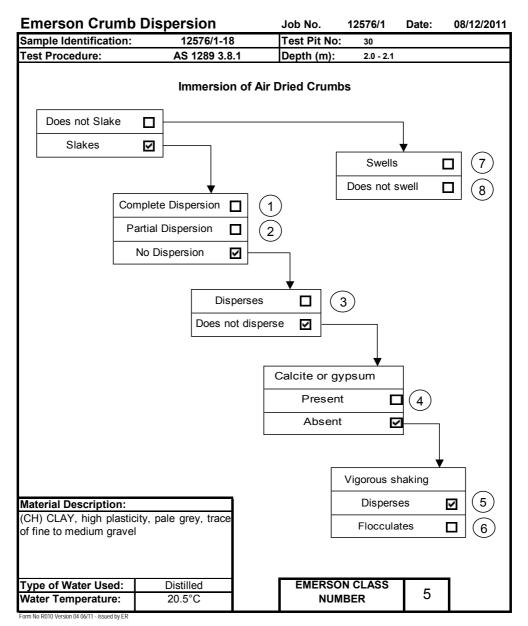
A Kench 08/12/2011

Approved_signatory

Head Office: 34 Borec Road, Penrith NSW 2750 P O Box 880 Penrith NSW 2751

Telephone: (02) 4722 2744 Facsimile: (02) 4722 2777

9: (02) 4/22 2///


Prestons Laboratory: Unit 4, 18-20 Whyalla Place, Prestons NSW 2170

Telephone: (02) 9607 6111 Facsimile: (02) 9607 6200

LAND CAPABILITY STUDY MARSDEN PARK PRECINCT - NORTH WEST GROWTH CENTRE, MARSDEN PARK

NATA

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

A Kench 08/12/2011

Nata Accreditation Number 2734

Corporate Site Number 2727

Approved_signatory

Unit 4, 18-20 Whyalla Place, Prestons NSW 2170

Telephone: (02) 9607 6111 Facsimile: (02) 9607 6200

Prestons Laboratory:

APPENDIX F

LABORATORY TEST RESULTS CERTIFICATES

Salinity

PENRITH NSW 2751

ANALYTICAL REPORT

CLIENT DETAILS -LABORATORY DETAILS

Emged Rizkalla **Huong Crawford** Contact Manager

Geotechnique Laboratory SGS Alexandria Environmental Client Address P.O. Box 880 Address

Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone 02 4722 2700 Telephone +61 2 8594 0400 Facsimile 02 4722 6161 Facsimile +61 2 8594 0499

Emged@geotech.com.au Email au.environmental.sydney@sgs.com Email

Project 12576/1 - Marsden Park Precinct SGS Reference SE102938 R0 (Not specified) Report Number 0000011543 Order Number 99 10 Nov 2011 Date Reported Samples 31 Oct 2011 Date Received

COMMENTS

The document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

Cation Exchange Capacity subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146, CE74772.

SIGNATORIES

Snezana Kostoska **Inorganics Chemist**

Every lostosia

SE102938 R0

	Sai S Sa	ple Number mple Matrix ample Date mple Name	SE102938.001 Soil 27 Oct 2011 TP-1 0.0-0.1	SE102938.002 Soil 27 Oct 2011 TP-1 1.0-1.1	SE102938.003 Soil 27 Oct 2011 TP-1 2.0-2.1	SE102938.004 Soil 28 Oct 2011 TP-2 0.0-0.1	SE102938.005 Soil 28 Oct 2011 TP-2 0.5-0.6					
Parameter Control TDC by Coloniation Coll. Matheway	Units	LOR										
Conductivity and TDS by Calculation - Soil Method:	AN106											
Conductivity	μS/cm	1	310	380	630	500	380					
Conductivity (1:5 dry sample basis)	μS/cm	1	380	450	760	600	490					
Total Dissolved Solids (by calculation)	mg/kg	5	1100	1300	2300	1800	1500					
pH in soil (1:5) Method: AN101												
рН	pH Units	-	5.7	5.6	6.4	5.8	4.6					
Soluble Anions in Soil by Ion Chromatography Method: AN245												
Chloride	mg/kg	0.25	580	-	-	-	740					
Sulphate	mg/kg	0.5	55	-	-	-	6.9					
Moisture Content Method: AN234												
% Moisture	%	0.5	17.6	14.4	16.9	15.9	21.9					
	Sample Number Sample Matrix		SE102938.006 Soil	SE102938.007 Soil	SE102938.008 Soil	SE102938.009 Soil	SE102938.010 Soil					
		ample Date mple Name	28 Oct 2011 TP-2 1.5-1.6	28 Oct 2011 TP-4 0.0-0.1	28 Oct 2011 TP-4 1.0-1.1	28 Oct 2011 TP-4 2.0-2.1	28 Oct 2011 TP-5 0.0-0.1					
Parameter	Units	LOR										
Conductivity and TDS by Calculation - Soil Method:	AN106											
Conductivity	μS/cm	1	550	34	90	100	78					
Conductivity (1:5 dry sample basis)	μS/cm	1	700	40	110	120	91					
Total Dissolved Solids (by calculation)	mg/kg	5	2100	120	330	370	270					
pH in soil (1:5) Method: AN101												
pH	pH Units	-	5.8	6.2	5.8	5.6	5.8					
Soluble Anions in Soil by Ion Chromatography Met	hod: AN245											
Chloride	mg/kg	0.25	-	-	-	96	-					
Sulphate	mg/kg	0.5	-	-	-	110	-					
Moisture Content Method: AN234												
% Moisture	%	0.5	22.1	15.6	17.8	17.8	14.2					
	Sai S	ple Number mple Matrix sample Date imple Name	SE102938.011 Soil 28 Oct 2011 TP-5 0.5-0.6	SE102938.012 Soil 28 Oct 2011 TP-5 1.5-1.6	SE102938.013 Soil 28 Oct 2011 TP-6 0.0-0.1	SE102938.014 Soil 28 Oct 2011 TP-6 0.5-0.6	SE102938.015 Soil 28 Oct 2011 TP-6 1.5-1.6					
Parameter	Units	LOR										
Conductivity and TDS by Calculation - Soil Method:												
Conductivity	μS/cm	1	82	23	120	78	60					
Conductivity (1:5 dry sample basis)	μS/cm	1	100	28	140	88	67					
Total Dissolved Solids (by calculation)	mg/kg	5	310	85	410	260	200					

Page 2 of 12 10-November-2011

SE102938 R0

	Sa	ple Number mple Matrix sample Date	SE102938.011 Soil 28 Oct 2011	SE102938.012 Soil 28 Oct 2011	SE102938.013 Soil 28 Oct 2011	SE102938.014 Soil 28 Oct 2011	SE102938.015 Soil 28 Oct 2011
	Sa	mple Name	TP-5 0.5-0.6	TP-5 1.5-1.6	TP-6 0.0-0.1	TP-6 0.5-0.6	TP-6 1.5-1.6
Parameter	Units	LOR					
pH in soil (1:5) Method: AN101							
рН	pH Units	-	5.5	6.1	5.4	5.5	5.7
Soluble Anions in Soil by Ion Chromatography Me	thod: AN245						
Chloride	mg/kg	0.25	-	130	9.8	-	-
Sulphate	mg/kg	0.5	-	130	33	-	-
Moisture Content Method: AN234							
% Moisture	%	0.5	20.1	19.9	10.0	11.5	10.8
		ple Number	SE102938.016 Soil	SE102938.017 Soil	SE102938.018 Soil	SE102938.019	SE102938.020 Soil
		mple Matrix ample Date	28 Oct 2011	28 Oct 2011	28 Oct 2011	Soil 28 Oct 2011	28 Oct 2011
	Sa	mple Name	TP-7 0.0-0.1	TP-7 1.0-1.1	TP-7 2.0-2.1	TP-8 0.0-0.1	TP-8 1.0-1.1
Parameter	Units	LOR					
Conductivity and TDS by Calculation - Soil Method							
			•			0700	1500
Conductivity Conductivity (1:5 dry sample basis)	μS/cm μS/cm	1	30	48 56	31 34	2700 3200	1500
Total Dissolved Solids (by calculation)	mg/kg	5	98	170	100	9600	5300
pH in soil (1:5) Method: AN101						1	
рН	pH Units	-	5.6	6.2	6.5	5.2	7.0
Soluble Anions in Soil by Ion Chromatography Me	thod: AN245						
Chloride	mg/kg	0.25	-	45	-	-	-
Sulphate	mg/kg	0.5	-	43	-	-	-
Moisture Content Method: AN234							
% Moisture	%	0.5	9.0	13.8	10.3	14.6	17.9
		ple Number mple Matrix	SE102938.021 Soil	SE102938.022 Soil	SE102938.023 Soil	SE102938.024 Soil	SE102938.025 Soil
	S	ample Date	28 Oct 2011				
	Sa	mple Name	TP-8 2.0-2.1	TP-9 0.0-0.1	TP-9 0.6-0.7	TP-9 1.5-1.6	TP-10 0.0-0.1
Parameter	Units	LOR					
Conductivity and TDS by Calculation - Soil Method	: AN106						
Conductivity	μS/cm	1	1400	220	510	340	240
Conductivity (1:5 dry sample basis)	μS/cm	1	1800	260	610	400	260
Total Dissolved Solids (by calculation)	mg/kg	5	5300	790	1800	1200	780
pH in soil (1:5) Method: AN101							

Page 3 of 12 10-November-2011

SE102938 R0

	Sai S	ple Number mple Matrix sample Date imple Name	SE102938.021 Soil 28 Oct 2011 TP-8 2.0-2.1	SE102938.022 Soil 28 Oct 2011 TP-9 0.0-0.1	SE102938.023 Soil 28 Oct 2011 TP-9 0.6-0.7	SE102938.024 Soil 28 Oct 2011 TP-9 1.5-1.6	SE102938.025 Soil 28 Oct 2011 TP-10 0.0-0.1
Parameter	Units	LOR					
Soluble Anions in Soil by Ion Chromatography Met	hod: AN245						
Chloride	mg/kg	0.25	2700	390	-	-	-
Sulphate	mg/kg	0.5	210	2.1	-	-	-
Moisture Content Method: AN234							
% Moisture	%	0.5	17.5	15.3	16.5	16.1	9.4
Parameter	Sai S	ple Number mple Matrix sample Date imple Name LOR	SE102938.026 Soil 28 Oct 2011 TP-10 1.0-1.1	SE102938.027 Soil 28 Oct 2011 TP-10 2.0-2.1	SE102938.028 Soil 28 Oct 2011 TP-11 0.0-0.1	SE102938.029 Soil 28 Oct 2011 TP-11 0.6-0.7	SE102938.030 Soil 28 Oct 2011 TP-11 1.5-1.6
Parameter Conductivity and TDS by Calculation - Soil Method:		- LOR					
		1					
Conductivity Conductivity (4.5 december hosis)	μS/cm	1	370	800	180	410	1000
Conductivity (1:5 dry sample basis) Total Discolved Solids (by soleylation)	μS/cm	5	420 1300	930 2800	600	480 1400	1200 3600
Total Dissolved Solids (by calculation)	mg/kg	5	1300	2000	600	1400	3000
pH in soil (1:5) Method: AN101							
рН	pH Units	-	4.7	4.6	6.3	5.3	5.6
Soluble Anions in Soil by Ion Chromatography Met	hod: AN245	0.25	470	-		670	_
Sulphate	mg/kg mg/kg	0.5	210	_		42	-
Moisture Content Method: AN234							
% Moisture	%	0.5	13.2	14.6	10.4	14.2	15.6
	Sai S	ple Number mple Matrix sample Date imple Name	SE102938.031 Soil 28 Oct 2011 TP-12 0.0-0.1	SE102938.032 Soil 28 Oct 2011 TP-12 1.0-1.1	SE102938.033 Soil 28 Oct 2011 TP-12 2.0-2.1	SE102938.034 Soil 28 Oct 2011 TP-13 0.0-0.1	SE102938.035 Soil 28 Oct 2011 TP-13 1.0-1.1
Parameter Conductivity and TDS by Calculation - Soil Method:	Units AN106	LOR					
Conductivity	μS/cm	1	96	440	780	79	410
Conductivity (1:5 dry sample basis)	μS/cm	1	110	530	940	87	490
Total Dissolved Solids (by calculation)	mg/kg	5	330	1600	2800	260	1500
pH in soil (1:5) Method: AN101							
рН	pH Units	-	5.6	4.8	4.9	5.8	5.0
	pH Units	-	5.6	4.8	4.9	5.8	5.0
		0.25	5.6 -	4.8	1200	-	5.0

Page 4 of 12 10-November-2011

SE102938 R0

		ple Number	SE102938.031 Soil	SE102938.032 Soil	SE102938.033 Soil	SE102938.034 Soil	SE102938.035 Soil
	S	Sample Date	28 Oct 2011				
	Sa	ample Name	TP-12 0.0-0.1	TP-12 1.0-1.1	TP-12 2.0-2.1	TP-13 0.0-0.1	TP-13 1.0-1.1
Parameter	Units	LOR					
Moisture Content Method: AN234							
% Moisture	%	0.5	12.1	17.7	16.6	9.1	16.4
		ple Number mple Matrix	SE102938.036 Soil	SE102938.037 Soil	SE102938.038 Soil	SE102938.039 Soil	SE102938.040 Soil
	S	Sample Date	28 Oct 2011	27 Oct 2011	27 Oct 2011	27 Oct 2011	27 Oct 2011
	Sa	ample Name	TP-13 2.0-2.1	TP-14 0.0-0.1	TP-14 0.6-0.7	TP-14 1.7-1.8	TP-15 0.0-0.1
Parameter	Units	LOR					
Conductivity and TDS by Calculation - Soil Method	: AN106						
Conductivity	μS/cm	1	290	300	470	470	45
Conductivity (1:5 dry sample basis)	μS/cm	1	330	360	580	570	53
Total Dissolved Solids (by calculation)	mg/kg	5	990	1100	1700	1700	160
pH in soil (1:5) Method: AN101							
рН	pH Units	-	5.2	5.7	4.8	6.2	6.0
Soluble Anions in Soil by Ion Chromatography Me	thod: AN245	0.25	290	380	_	_	
Sulphate	mg/kg	0.23	100	170		_	
Moisture Content Method: AN234 % Moisture	%	0.5	12.8	16.2	18.7	16.9	13.7
	,,,			132		10.0	
		ple Number	SE102938.041	SE102938.042	SE102938.043	SE102938.044	SE102938.045
		mple Matrix Sample Date	Soil 27 Oct 2011				
		ample Name	TP-15 1.0-1.1	TP-15 2.0-2.1	TP-16 0.0-0.1	TP-16 0.6-0.7	TP-16 1.5-1.6
Parameter	Units	LOR					
	: AN106	LON					
Conductivity	μS/cm	1	260	770	160	290	670
Conductivity (1:5 dry sample basis)	μS/cm	1	290	920	170	350	830
Total Dissolved Solids (by calculation)	mg/kg	5	870	2800	510	1100	2500
pH in soil (1:5) Method: AN101							
рН	pH Units	-	5.0	5.3	5.3	5.3	5.0
Soluble Anions in Soil by Ion Chromatography Me	thod: AN245						
Chloride	mg/kg	0.25	260	-	-	690	-
Sulphate	mg/kg	0.5	190	-	-	110	-
Moisture Content Method: AN234							
% Moisture	%	0.5	10.7	16.3	8.7	18.6	18.9

Page 5 of 12 10-November-2011

SE102938 R0

	Sa S	ple Number mple Matrix Sample Date ample Name	SE102938.046 Soil 28 Oct 2011 TP-18 0.0-0.1	SE102938.047 Soil 28 Oct 2011 TP-18 1.0-1.1	SE102938.048 Soil 28 Oct 2011 TP-18 2.0-2.1	SE102938.049 Soil 28 Oct 2011 TP-19 0.0-0.1	SE102938.050 Soil 28 Oct 2011 TP-19 0.5-0.6					
Parameter	Units	LOR										
Conductivity and TDS by Calculation - Soil Method:	AN106											
Conductivity	μS/cm	1	150	760	650	120	360					
Conductivity (1:5 dry sample basis)	μS/cm	1	170	940	810	140	460					
Total Dissolved Solids (by calculation)	mg/kg	5	500	2800	2400	430	1400					
pH in soil (1:5) Method: AN101												
pH	pH Units	-	5.9	5.0	5.3	5.6	5.0					
Soluble Anions in Soil by Ion Chromatography Met	hod: AN245											
Chloride	mg/kg	0.25	-	-	640	150	-					
Sulphate	mg/kg	0.5	-	-	92	34	-					
Moisture Content Method: AN234												
% Moisture	%	0.5	11.5	19.7	19.9	16.4	20.4					
Parameter	Sa S	ple Number mple Matrix Sample Date ample Name	SE102938.051 Soil 28 Oct 2011 TP-19 1.5-1.6	SE102938.052 Soil 27 Oct 2011 TP-21 0.0-0.1	SE102938.053 Soil 27 Oct 2011 TP-21 1.0-1.1	SE102938.054 Soil 27 Oct 2011 TP-21 2.0-2.1	SE102938.055 Soil 27 Oct 2011 TP-22 0.0-0.1					
Conductivity and TDS by Calculation - Soil Method:												
Conductivity	μS/cm	1	910	37	760	1200	240					
Conductivity (1:5 dry sample basis)	μS/cm	1	1200	41	980	1500	270					
Total Dissolved Solids (by calculation)	mg/kg	5	3500	120	2900	4400	820					
pH in soil (1:5) Method: AN101												
pH	pH Units	-	4.4	6.1	5.0	5.1	5.7					
Soluble Anions in Soil by Ion Chromatography Met	hod: AN245											
Chloride	mg/kg	0.25	1500	-	890	-	-					
Sulphate	mg/kg	0.5	47	-	270	-	-					
Moisture Content Method: AN234												
% Moisture	%	0.5	21.5	10.4	22.5	18.1	13.0					
	Sam	ple Number mple Matrix	SE102938.056 Soil	SE102938.057 Soil	SE102938.058 Soil	SE102938.059 Soil	SE102938.060 Soil					
	Sa S	Sample Date	27 Oct 2011									
	Sa Sa Sa	Sample Date ample Name	27 Oct 2011 TP-22 1.0-1.1	27 Oct 2011 TP-22 2.0-2.1	27 Oct 2011 TP-23 0.0-0.1	27 Oct 2011 TP-23 0.5-0.6	27 Oct 2011 TP-23 1.5-1.6					
Parameter Conductivity and TDS by Calculation - Soil Method:	Sa Sa Units	Sample Date										
	Sa Sa Units	Sample Date ample Name										
Conductivity and TDS by Calculation - Soil Method:	Sa Sa Units AN106	Sample Date ample Name LOR	TP-22 1.0-1.1	TP-22 2.0-2.1	TP-23 0.0-0.1	TP-23 0.5-0.6	TP-23 1.5-1.6					

Page 6 of 12 10-November-2011

SE102938 R0

	Sai S	ple Number mple Matrix ample Date	SE102938.056 Soil 27 Oct 2011	SE102938.057 Soil 27 Oct 2011	SE102938.058 Soil 27 Oct 2011	SE102938.059 Soil 27 Oct 2011	SE102938.060 Soil 27 Oct 2011
	Sa	mple Name	TP-22 1.0-1.1	TP-22 2.0-2.1	TP-23 0.0-0.1	TP-23 0.5-0.6	TP-23 1.5-1.6
Parameter	Units	LOR					
pH in soil (1:5) Method: AN101							
рН	pH Units	-	7.1	7.3	5.8	5.8	5.1
Soluble Anions in Soil by Ion Chromatography Met	hod: AN245						
Chloride	mg/kg	0.25	1100	-	-	460	-
Sulphate	mg/kg	0.5	190	-	-	180	-
Moisture Content Method: AN234							
% Moisture	%	0.5	18.9	16.9	6.8	16.4	18.6
	_						
		ple Number	SE102938.061 Soil	SE102938.062 Soil	SE102938.063 Soil	SE102938.064	SE102938.065
		mple Matrix ample Date	27 Oct 2011	27 Oct 2011	27 Oct 2011	Soil 27 Oct 2011	Soil 27 Oct 2011
	Sa	mple Name	TP-24 0.0-0.1	TP-24 1.5-1.6	TP-24 2.3-2.4	TP-25 0.0-0.1	TP-25 1.2-1.3
Parameter	Units	LOR					
Conductivity and TDS by Calculation - Soil Method:		LOR					
	I	T . I					
Conductivity Conductivity (4.5 day comple basis)	µS/cm	1	300	870 1100	1100	3400 3900	1700 1900
Conductivity (1:5 dry sample basis) Total Dissolved Solids (by calculation)	μS/cm mg/kg	5	1000	3200	4000	12000	5800
pH in soil (1:5) Method: AN101	ı						
pH	pH Units	-	6.4	6.7	6.8	5.3	7.6
Soluble Anions in Soil by Ion Chromatography Met	hod: AN245						
Chloride	mg/kg	0.25	-	-	1600	-	2200
Sulphate	mg/kg	0.5	-	-	280	-	370
Moisture Content Method: AN234							
% Moisture	%	0.5	12.0	17.9	14.4	13.9	14.8
		ple Number nple Matrix	SE102938.066 Soil	SE102938.067 Soil	SE102938.068 Soil	SE102938.069 Soil	SE102938.070 Soil
	s	ample Date	27 Oct 2011				
	Sa	mple Name	TP-25 2.0-2.1	TP-26 0.0-0.1	TP-26 0.5-0.6	TP-26 1.5-1.6	TP-27 0.0-0.1
Parameter	Units	LOR					
Conductivity and TDS by Calculation - Soil Method:							
Conductivity	μS/cm	1	1300	210	240	340	1000
Conductivity (1:5 dry sample basis)	μS/cm	1	1700	260	300	400	1200
Total Dissolved Solids (by calculation)	mg/kg	5	5100	770	900	1200	3500
pH in soil (1:5) Method: AN101							
рН	pH Units	-	7.4	6.1	5.6	5.4	5.5

Page 7 of 12 10-November-2011

SE102938 R0

	Sai S	ple Number mple Matrix Sample Date ample Name	SE102938.066 Soil 27 Oct 2011 TP-25 2.0-2.1	SE102938.067 Soil 27 Oct 2011 TP-26 0.0-0.1	SE102938.068 Soil 27 Oct 2011 TP-26 0.5-0.6	SE102938.069 Soil 27 Oct 2011 TP-26 1.5-1.6	SE102938.070 Soil 27 Oct 2011 TP-27 0.0-0.1
Parameter	Units	LOR					
Soluble Anions in Soil by Ion Chromatography Met	thod: AN245						
Chloride	mg/kg	0.25	-	-	390	-	-
Sulphate	mg/kg	0.5	-	-	56	-	-
Moisture Content Method: AN234							
% Moisture	%	0.5	21.5	17.4	21.6	15.5	14.6
	Sai S	ple Number mple Matrix Sample Date ample Name	SE102938.071 Soil 27 Oct 2011 TP-27 0.5-0.6	SE102938.072 Soil 27 Oct 2011 TP-27 1.5-1.6	SE102938.073 Soil 28 Oct 2011 TP-28 0.0-0.1	SE102938.074 Soil 28 Oct 2011 TP-28 0.5-0.6	SE102938.075 Soil 28 Oct 2011 TP-28 1.5-1.6
Parameter	Units	LOR					
Conductivity and TDS by Calculation - Soil Method:	AN106						
Conductivity	μS/cm	1	520	470	39	210	240
Conductivity (1:5 dry sample basis)	μS/cm	1	620	560	43	280	280
Total Dissolved Solids (by calculation)	mg/kg	5	1900	1700	130	830	840
pH in soil (1:5) Method: AN101	pH Units	-	4.8	5.9	5.9	5.2	5.2
Soluble Anions in Soil by Ion Chromatography Met	thod: AN245						
Chloride	mg/kg	0.25	-	630	19	-	-
Sulphate	mg/kg	0.5	-	160	13	-	
Moisture Content Method: AN234							-
							-
% Moisture	%	0.5	16.6	17.6	11.3	23.6	16.1
% Moisture	Sam Sa S	0.5 ple Number mple Matrix Sample Date ample Name	16.6 SE102938.076 Soil 28 Oct 2011 TP-29 0.0-0.1	17.6 SE102938.077 Soil 28 Oct 2011 TP-29 1.1-1.2	11.3 SE102938.078 Soil 28 Oct 2011 TP-29 2.0-2.1	23.6 SE102938.079 Soil 28 Oct 2011 TP-30 0.0-0.1	
% Moisture Parameter	Sam Sa S	ple Number mple Matrix Sample Date	SE102938.076 Soil 28 Oct 2011	SE102938.077 Soil 28 Oct 2011	SE102938.078 Soil 28 Oct 2011	SE102938.079 Soil 28 Oct 2011	16.1 SE102938.080 Soil 28 Oct 2011
Parameter Conductivity and TDS by Calculation - Soil Method:	Sam Sai S Sa Units	ple Number mple Matrix Sample Date ample Name LOR	SE102938.076 Soil 28 Oct 2011 TP-29 0.0-0.1	SE102938.077 Soil 28 Oct 2011 TP-29 1.1-1.2	SE102938.078 Soil 28 Oct 2011 TP-29 2.0-2.1	SE102938.079 Soil 28 Oct 2011 TP-30 0.0-0.1	16.1 SE102938.080 Soil 28 Oct 2011 TP-30 1.0-1.1
Parameter Conductivity and TDS by Calculation - Soil Method: Conductivity	Sam Sai Sa Sa Units	ple Number mple Matrix sample Date ample Name LOR	SE102938.076 Soil 28 Oct 2011 TP-29 0.0-0.1	SE102938.077 Soil 28 Oct 2011 TP-29 1.1-1.2	SE102938.078 Soil 28 Oct 2011 TP-29 2.0-2.1	SE102938.079 Soil 28 Oct 2011 TP-30 0.0-0.1	16.1 SE102938.080 Soil 28 Oct 2011 TP-30 1.0-1.1
Parameter Conductivity and TDS by Calculation - Soil Method: Conductivity Conductivity (1:5 dry sample basis)	Sam Sai Sai Sa Units AN106	ple Number mple Matrix sample Date ample Name LOR	SE102938.076 Soil 28 Oct 2011 TP-29 0.0-0.1	SE102938.077 Soil 28 Oct 2011 TP-29 1.1-1.2	SE102938.078 Soil 28 Oct 2011 TP-29 2.0-2.1	SE102938.079 Soil 28 Oct 2011 TP-30 0.0-0.1	16.1 SE102938.080 Soil 28 Oct 2011 TP-30 1.0-1.1
Parameter Conductivity and TDS by Calculation - Soil Method: Conductivity	Sam Sai Sa Sa Units	ple Number mple Matrix sample Date ample Name LOR	SE102938.076 Soil 28 Oct 2011 TP-29 0.0-0.1	SE102938.077 Soil 28 Oct 2011 TP-29 1.1-1.2	SE102938.078 Soil 28 Oct 2011 TP-29 2.0-2.1	SE102938.079 Soil 28 Oct 2011 TP-30 0.0-0.1	16.1 SE102938.080 Soil 28 Oct 2011 TP-30 1.0-1.1
Parameter Conductivity and TDS by Calculation - Soil Method: Conductivity Conductivity (1:5 dry sample basis) Total Dissolved Solids (by calculation)	Sam Sai Sai Sa Units AN106	ple Number mple Matrix sample Date ample Name LOR	SE102938.076 Soil 28 Oct 2011 TP-29 0.0-0.1	SE102938.077 Soil 28 Oct 2011 TP-29 1.1-1.2	SE102938.078 Soil 28 Oct 2011 TP-29 2.0-2.1	SE102938.079 Soil 28 Oct 2011 TP-30 0.0-0.1	16.1 SE102938.080 Soil 28 Oct 2011 TP-30 1.0-1.1
Parameter Conductivity and TDS by Calculation - Soil Method: Conductivity Conductivity (1:5 dry sample basis) Total Dissolved Solids (by calculation) pH in soil (1:5) Method: AN101 pH	Sam, Sai Sai Sa Units AN106 µS/cm µS/cm mg/kg	pie Number mple Matrix sample Date ample Name LOR	SE102938.076 Soil 28 Oct 2011 TP-29 0.0-0.1 35 38	SE102938.077 Soil 28 Oct 2011 TP-29 1.1-1.2 470 540 1600	SE102938.078 Soil 28 Oct 2011 TP-29 2.0-2.1 450 520 1600	SE102938.079 Soil 28 Oct 2011 TP-30 0.0-0.1	16.1 SE102938.080 Soil 28 Oct 2011 TP-30 1.0-1.1 50 61 180
Parameter Conductivity and TDS by Calculation - Soil Method: Conductivity Conductivity (1:5 dry sample basis) Total Dissolved Solids (by calculation) pH in soil (1:5) Method: AN101 pH	Sam Sai Sai Sa Units AN106 µS/cm µS/cm mg/kg	pie Number mple Matrix sample Date ample Name LOR	SE102938.076 Soil 28 Oct 2011 TP-29 0.0-0.1 35 38	SE102938.077 Soil 28 Oct 2011 TP-29 1.1-1.2 470 540 1600	SE102938.078 Soil 28 Oct 2011 TP-29 2.0-2.1 450 520 1600	SE102938.079 Soil 28 Oct 2011 TP-30 0.0-0.1	16.1 SE102938.080 Soil 28 Oct 2011 TP-30 1.0-1.1 50 61 180

Page 8 of 12 10-November-2011

SE102938 R0

	Com	ple Number	SE102938.076	SE102938.077	SE102938.078	SE102938.079	SE102938.080
		mple Matrix	Se 102936.076 Soil	Se102936.077 Soil	Se 102936.076 Soil	Se 102936.079 Soil	Se 102936.060 Soil
		Sample Date	28 Oct 2011	28 Oct 2011	28 Oct 2011	28 Oct 2011	28 Oct 2011
	Sa	ample Name	TP-29 0.0-0.1	TP-29 1.1-1.2	TP-29 2.0-2.1	TP-30 0.0-0.1	TP-30 1.0-1.1
Parameter	Units	LOR					
Moisture Content Method: AN234	Onno	LOIL					
Mosture Content Method. AN234							
% Moisture	%	0.5	6.8	13.3	14.7	8.1	18.2
		ple Number mple Matrix	SE102938.081 Soil	SE102938.082 Soil	SE102938.083 Soil	SE102938.084 Soil	SE102938.085 Soil
		Sample Date	28 Oct 2011	27 Oct 2011	27 Oct 2011	27 Oct 2011	27 Oct 2011
	Sa	ample Name	TP-30 2.0-2.1	TP-31 0.0-0.1	TP-31 1.0-1.1	TP-31 2.0-2.1	TP-32 0.0-0.1
Darameter	Units	LOR					
Parameter Conductivity and TDS by Colculation Soil Mo		LOR					
Conductivity and TDS by Calculation - Soil Me	thod: AN106						
Conductivity	μS/cm	1	53	130	78	650	1000
Conductivity (1:5 dry sample basis)	μS/cm	1	63	160	94	780	1200
Total Dissolved Solids (by calculation)	mg/kg	5	190	490	280	2300	3600
pH in soil (1:5) Method: AN101							
рН	pH Units	-	5.7	6.6	6.4	6.8	6.2
Chloride Sulphate	mg/kg	0.25	-	97 96	-	-	-
Supriate	Ilig/kg	0.5	-	90	-	-	-
Moisture Content Method: AN234							
% Moisture	%	0.5	16.2	17.7	16.7	16.1	16.4
		ple Number	SE102938.086	SE102938.087	SE102938.088	SE102938.089	SE102938.090
		mple Matrix Sample Date	Soil 27 Oct 2011	Soil 27 Oct 2011	Soil 27 Oct 2011	Soil 27 Oct 2011	Soil 27 Oct 2011
		ample Name	TP-32 0.6-0.7	TP-32 1.5-1.6	TP-33 0.0-0.1	TP-33 1.0-1.1	TP-33 2.0-2.1
Parameter	Units	LOR					
Conductivity and TDS by Calculation - Soil Me	thod: AN106						
Conductivity	μS/cm	1	1700	1500	1200	1000	1000
Conductivity (1:5 dry sample basis)	μS/cm	1	2000	1700	1500	1300	1200
Total Dissolved Solids (by calculation)	mg/kg	5	6100	5200	4400	3800	3700
pH in soil (1:5) Method: AN101							
рН	pH Units	-	7.3	7.8	5.3	6.8	6.7
Soluble Anions in Soil by Ion Chromatography	Method: AN245						
Chloride	mg/kg	0.25	2700	-	2100	-	-
Sulphate	mg/kg	0.5	330	-	310	-	-
Moisture Content Method: AN234							
% Moisture	%	0.5	17.6	16.7	14.9	18.5	19.2

Page 9 of 12 10-November-2011

SE102938 R0

	Sai S	ple Number mple Matrix ample Date mple Name	SE102938.091 Soil 27 Oct 2011 TP-34 0.0-0.1	SE102938.092 Soil 27 Oct 2011 TP-34 0.5-0.6	SE102938.093 Soil 27 Oct 2011 TP-34 1.5-1.6	SE102938.094 Soil 27 Oct 2011 TP-35 0.0-0.1	SE102938.095 Soil 27 Oct 2011 TP-35 1.0-1.1
Parameter	Units	LOR					
Conductivity and TDS by Calculation - Soil Method:	AN106						
Conductivity	μS/cm	1	48	570	690	52	940
Conductivity (1:5 dry sample basis)	μS/cm	1	52	710	790	61	1200
Total Dissolved Solids (by calculation)	mg/kg	5	160	2100	2400	180	3600
pH in soil (1:5) Method: AN101							
pH	pH Units	-	5.9	4.9	5.1	6.4	6.5
Soluble Anions in Soil by Ion Chromatography Met	hod: AN245						
Chloride	mg/kg	0.25	-	-	910	-	1200
Sulphate	mg/kg	0.5	-	-	180	-	220
Moisture Content Method: AN234 % Moisture	%	0.5	8.0	20.0	12.9	14.7	22.3
	Sai S	ple Number mple Matrix ample Date mple Name	SE102938.096 Soil 27 Oct 2011 TP-35 2.0-2.1	SE102938.097 Soil 28 Oct 2011 TP-36 0.0-0.1	SE102938.098 Soil 28 Oct 2011 TP-36 1.0-1.1	SE102938.099 Soil 28 Oct 2011 TP-36 2.0-2.1	
Parameter	Units	LOR					
Conductivity and TDS by Calculation - Soil Method:	AN106						'
Conductivity	μS/cm	1	1000	83	850	850	
Conductivity (1:5 dry sample basis)	μS/cm	1	1200	99	1100	1100	
Total Dissolved Solids (by calculation)	mg/kg	5	3700	300	3200	3200	
pH in soil (1:5) Method: AN101							
рН	pH Units	-	7.2	5.9	5.1	4.9	
Soluble Anions in Soil by Ion Chromatography Met	hod: AN245						
Chloride	mg/kg	0.25	-	65	-	-	
Sulphate	mg/kg	0.5	-	31	-	-	
Moisture Content Method: AN234							
% Moisture	%	0.5	16.2	15.8	21.2	20.0	
					1		

Page 10 of 12 10-November-2011

QC SUMMARY

MB blank results are compared to the Limit of Reporting
LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Conductivity	LB008001	μS/cm	1	<1	7 - 16%	102%
	LB008002	μS/cm	1	<1	2 - 4%	99%
	LB008003	μS/cm	1	<1	2 - 7%	99%
	LB008004	μS/cm	1	<1	9 - 12%	98%
	LB008006	μS/cm	1	<1	3 - 8%	102%
Conductivity (1:5 dry sample basis)	LB008001	μS/cm	1	<1	7 - 16%	NA
	LB008002	μS/cm	1	<1	2 - 4%	NA
	LB008003	μS/cm	1	<1	2 - 7%	NA
	LB008004	μS/cm	1	<1	9 - 12%	NA
	LB008006	μS/cm	1	<1	3 - 8%	NA
Total Dissolved Solids (by calculation)	LB008001	mg/kg	5	<5	7 - 16%	102%
	LB008002	mg/kg	5	<5	2 - 4%	99%
	LB008003	mg/kg	5	<5	2 - 7%	99%
	LB008004	mg/kg	5	<5	9 - 12%	98%
	LB008006	mg/kg	5	<5	3 - 8%	102%

pH in soil (1:5) Method: ME-(AU)-[ENV]AN101

Parameter	QC Reference	Units	LOR	DUP %RPD	LCS %Recovery
pH	LB008007	pH Units	-	1 - 2%	99%
1	LB008008	pH Units	-	1 - 2%	100%
1	LB008010	pH Units	-	0%	100%
1	LB008011	pH Units	-	1%	99%
1	LB008013	pH Units	-	0 - 2%	100%

Soluble Anions in Soil by Ion Chromatography Method: ME-(AU)-[ENV]AN245

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Chloride	LB007933	mg/kg	0.25	<0.25	1 - 5%	102 - 103%
	LB007934	mg/kg	0.25	<0.25	0%	102%
Sulphate	LB007933	mg/kg	0.5	<0.5	2 - 4%	102%
	LB007934	mg/kg	0.5	<0.5	0%	102%

Page 11 of 12 10-November-2011

SE102938 R0

METHOD SUMMARY

METHOD

METHODOLOGY SUMMARY

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN106

Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2520 B.

AN234

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN245

Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

EOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

This analysis is not covered by the scope of accreditation.

Performed by outside laboratory.

LOR Limit of Reporting

↑↓ Raised or Lowered Limit of Reporting

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance
The sample was not analysed for this analyte

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

NVL

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Not Validated

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

Page 12 of 12 10-November-2011

STATEMENT OF QA/QC PERFORMANCE **AGAINST DATA QUALITY OBJECTIVES**

SE102938 R0

CLIENT DETAILS . LABORATORY DETAILS

Emged Rizkalla **Huong Crawford** Manager Contact

Client Geotechnique Laboratory SGS Alexandria Environmental P.O. Box 880 Address Unit 16, 33 Maddox St Address

PENRITH NSW 2751 Alexandria NSW 2015

02 4722 2700 +61 2 8594 0400 Telephone Telephone 02 4722 6161 +61 2 8594 0499 Facsimile

Facsimile Emged@geotech.com.au au.environmental.sydney@sgs.com Fmail

Email

12576/1 - Marsden Park Precinct SE102938 R0 SGS Reference Project 0000011638 (Not specified) Order Number Report Number 11 Nov 2011 99 Samples Date Reported

COMMENTS

All the laboratory data for each environmental matrix was compared to the SGS Environmental Services' stated data quality objectives (DQO).

Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the chain of custody document and was supplied by the client.

This QA/QC statement must be read in conjunction with the referenced analytical report.

The statement and the analytical report must not be reproduced except in full.

All Data Quality Objectives were met.

SAMPLE SUMMARY

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received

99 Soils 31/10/11@1:14pm N/A Client Yes None Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

Email Yes 20°C Standard Yes Yes

SGS Australia Pty Ltd Unit 16, 33 Maddox Street ABN 44 000 964 278

Alexandria NSW 2015 Australia

t +61 (0)2 8594 0400

f +61 (0)2 8594 0499

www.au.sgs.com

HOLDING TIMES -

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field sampling guide for containers and holding time" (Ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1: 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

The extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and Analysis dates are shown in Green when within suggested criteria and in **Bold** with an appended dagger symbol and **Red†** when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample Number	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Conductivity and TDS by Ca	alculation - Soil Method: ME-(AU	J)-[ENV]AN106						
TP-1 0.0-0.1	SE102938.001	LB008001	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
			27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	
TP-1 1.0-1.1	SE102938.002	LB008001	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
TP-1 2.0-2.1	SE102938.003	LB008001	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
TP-2 0.0-0.1	SE102938.004	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
TP-2 0.5-0.6	SE102938.005	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
TP-2 1.5-1.6	SE102938.006	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
ГР-4 0.0-0.1	SE102938.007	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
ГР-4 1.0-1.1	SE102938.008	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-4 2.0-2.1	SE102938.009	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
ΓP-5 0.0-0.1	SE102938.010	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
TP-5 0.5-0.6	SE102938.011	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-5 1.5-1.6	SE102938.012	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
TP-6 0.0-0.1	SE102938.013	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-6 0.5-0.6	SE102938.014	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-6 1.5-1.6	SE102938.015	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-7 0.0-0.1	SE102938.016	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-7 1.0-1.1	SE102938.017	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-7 2.0-2.1	SE102938.018	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-8 0.0-0.1	SE102938.019	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-8 1.0-1.1	SE102938.020	LB008001	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-8 2.0-2.1	SE102938.021	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-9 0.0-0.1	SE102938.022	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-9 0.6-0.7	SE102938.023	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-9 1.5-1.6	SE102938.024	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-10 0.0-0.1	SE102938.025	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-10 1.0-1.1	SE102938.026	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-10 2.0-2.1	SE102938.027	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-11 0.0-0.1	SE102938.028	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-11 0.6-0.7	SE102938.029	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 20
TP-11 1.5-1.6	SE102938.030	LB008002						
P-12 0.0-0.1		LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
	SE102938.031		28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-12 1.0-1.1	SE102938.032	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-12 2.0-2.1	SE102938.033	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-13 0.0-0.1	SE102938.034	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-13 1.0-1.1	SE102938.035	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-13 2.0-2.1	SE102938.036	LB008002	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-14 0.0-0.1	SE102938.037	LB008002	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-14 0.6-0.7	SE102938.038	LB008002	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-14 1.7-1.8	SE102938.039	LB008002	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-15 0.0-0.1	SE102938.040	LB008002	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-15 1.0-1.1	SE102938.041	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-15 2.0-2.1	SE102938.042	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-16 0.0-0.1	SE102938.043	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-16 0.6-0.7	SE102938.044	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-16 1.5-1.6	SE102938.045	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-18 0.0-0.1	SE102938.046	LB008003	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-18 1.0-1.1	SE102938.047	LB008003	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-18 2.0-2.1	SE102938.048	LB008003	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-19 0.0-0.1	SE102938.049	LB008003	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201
P-19 0.5-0.6	SE102938.050	LB008003	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 201

11/11/2011 Page 2 of 17

HOLDING TIMES -

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field sampling guide for containers and holding time" (Ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1: 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

The extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and Analysis dates are shown in Green when within suggested criteria and in **Bold** with an appended dagger symbol and **Red†** when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample Number	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP-19 1.5-1.6	SE102938.051	LB008003	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-21 0.0-0.1	SE102938.052	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-21 1.0-1.1	SE102938.053	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-21 2.0-2.1	SE102938.054	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-22 0.0-0.1	SE102938.055	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-22 1.0-1.1	SE102938.056	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-22 2.0-2.1	SE102938.057	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-23 0.0-0.1	SE102938.058	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-23 0.5-0.6	SE102938.059	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-23 1.5-1.6	SE102938.060	LB008003	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-24 0.0-0.1	SE102938.061	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-24 1.5-1.6	SE102938.062	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-24 2.3-2.4	SE102938.063	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-25 0.0-0.1	SE102938.064	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-25 1.2-1.3	SE102938.065	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-25 2.0-2.1	SE102938.066	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-26 0.0-0.1	SE102938.067	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-26 0.5-0.6	SE102938.068	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-26 1.5-1.6	SE102938.069	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-27 0.0-0.1	SE102938.070	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-27 0.5-0.6	SE102938.071	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-27 1.5-1.6	SE102938.072	LB008004	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-28 0.0-0.1	SE102938.073	LB008004	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-28 0.5-0.6	SE102938.074	LB008004	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-28 1.5-1.6	SE102938.075	LB008004	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-29 0.0-0.1	SE102938.076	LB008004	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-29 1.1-1.2	SE102938.077	LB008004	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-29 2.0-2.1	SE102938.078	LB008004	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-30 0.0-0.1	SE102938.079	LB008004	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-30 1.0-1.1	SE102938.080	LB008004	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-30 2.0-2.1	SE102938.081	LB008006	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-31 0.0-0.1	SE102938.082	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-31 1.0-1.1	SE102938.083	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-31 2.0-2.1	SE102938.084	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-32 0.0-0.1	SE102938.085	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-32 0.6-0.7	SE102938.086	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-32 1.5-1.6	SE102938.087	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-33 0.0-0.1	SE102938.088	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-33 1.0-1.1	SE102938.089	LB008006			03 Nov 2011			
TP-33 2.0-2.1	SE102938.090	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011 01 Nov 2011	03 Nov 2011	01 Nov 2011
			27 Oct 2011	31 Oct 2011			03 Nov 2011	01 Nov 2011
TP-34 0.0-0.1	SE102938.091	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-34 0.5-0.6	SE102938.092	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-34 1.5-1.6	SE102938.093	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-35 0.0-0.1	SE102938.094	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-35 1.0-1.1	SE102938.095	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-35 2.0-2.1	SE102938.096	LB008006	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-36 0.0-0.1	SE102938.097	LB008006	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-36 1.0-1.1	SE102938.098	LB008006	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011
TP-36 2.0-2.1	SE102938.099	LB008006	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	04 Nov 2011	01 Nov 2011

11/11/2011 Page 3 of 17

HOLDING TIMES -

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field sampling guide for containers and holding time" (Ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1: 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

The extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and Analysis dates are shown in Green when within suggested criteria and in **Bold** with an appended dagger symbol and **Red†** when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample Number	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Moisture Content Method:	: ME-(AU)-[ENV]AN234		_					
ГР-1 0.0-0.1	SE102938.001	LB007976	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-1 1.0-1.1	SE102938.002	LB007976	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-1 2.0-2.1	SE102938.003	LB007976	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-2 0.0-0.1	SE102938.004	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-2 0.5-0.6	SE102938.005	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-2 1.5-1.6	SE102938.006	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-4 0.0-0.1	SE102938.007	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
ГР-4 1.0-1.1	SE102938.008	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
ΓP-4 2.0-2.1	SE102938.009	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
ΓP-5 0.0-0.1	SE102938.010	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-5 0.5-0.6	SE102938.011	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-5 1.5-1.6	SE102938.012	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-6 0.0-0.1	SE102938.013	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-6 0.5-0.6	SE102938.014	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-6 1.5-1.6	SE102938.015	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-7 0.0-0.1	SE102938.016	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-7 1.0-1.1	SE102938.017	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-7 2.0-2.1	SE102938.018	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-8 0.0-0.1	SE102938.019	LB007976	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-8 1.0-1.1	SE102938.020	LB007976			11 Nov 2011	02 Nov 2011		
P-8 2.0-2.1	SE102938.021	LB007977	28 Oct 2011 28 Oct 2011	31 Oct 2011 31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011 07 Nov 2011	03 Nov 2011 03 Nov 2011
P-9 0.0-0.1	SE102938.021	LB007977			11 Nov 2011		07 Nov 2011	
P-9 0.6-0.7	SE102938.022	LB007977	28 Oct 2011	31 Oct 2011		02 Nov 2011		03 Nov 2011
			28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-9 1.5-1.6 P-10 0.0-0.1	SE102938.024	LB007977 LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
	SE102938.025		28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-10 1.0-1.1	SE102938.026	LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-10 2.0-2.1	SE102938.027	LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-11 0.0-0.1	SE102938.028	LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
FP-11 0.6-0.7	SE102938.029	LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-11 1.5-1.6	SE102938.030	LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-12 0.0-0.1	SE102938.031	LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-12 1.0-1.1	SE102938.032	LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-12 2.0-2.1	SE102938.033	LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-13 0.0-0.1	SE102938.034	LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-13 1.0-1.1	SE102938.035	LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-13 2.0-2.1	SE102938.036	LB007977	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-14 0.0-0.1	SE102938.037	LB007977	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-14 0.6-0.7	SE102938.038	LB007977	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-14 1.7-1.8	SE102938.039	LB007977	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-15 0.0-0.1	SE102938.040	LB007977	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-15 1.0-1.1	SE102938.041	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-15 2.0-2.1	SE102938.042	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-16 0.0-0.1	SE102938.043	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-16 0.6-0.7	SE102938.044	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
P-16 1.5-1.6	SE102938.045	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-18 0.0-0.1	SE102938.046	LB007978	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-18 1.0-1.1	SE102938.047	LB007978	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
ΓP-18 2.0-2.1	SE102938.048	LB007978	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-19 0.0-0.1	SE102938.049	LB007978	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
ГР-19 0.5-0.6	SE102938.050	LB007978	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011

11/11/2011 Page 4 of 17

HOLDING TIMES -

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field sampling guide for containers and holding time" (Ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1: 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

The extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and Analysis dates are shown in Green when within suggested criteria and in **Bold** with an appended dagger symbol and **Red†** when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample Number	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
			_					
TP-19 1.5-1.6	SE102938.051	LB007978	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-21 0.0-0.1	SE102938.052	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-21 1.0-1.1	SE102938.053	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-21 2.0-2.1	SE102938.054	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-22 0.0-0.1	SE102938.055	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-22 1.0-1.1	SE102938.056	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-22 2.0-2.1	SE102938.057	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-23 0.0-0.1	SE102938.058	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-23 0.5-0.6	SE102938.059	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-23 1.5-1.6	SE102938.060	LB007978	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-24 0.0-0.1	SE102938.061	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-24 1.5-1.6	SE102938.062	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-24 2.3-2.4	SE102938.063	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-25 0.0-0.1	SE102938.064	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-25 1.2-1.3	SE102938.065	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-25 2.0-2.1	SE102938.066	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-26 0.0-0.1	SE102938.067	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-26 0.5-0.6	SE102938.068	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-26 1.5-1.6	SE102938.069	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-27 0.0-0.1	SE102938.070	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-27 0.5-0.6	SE102938.071	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-27 1.5-1.6	SE102938.072	LB007979	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-28 0.0-0.1	SE102938.073	LB007979	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-28 0.5-0.6	SE102938.074	LB007979	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-28 1.5-1.6	SE102938.075	LB007979	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-29 0.0-0.1	SE102938.076	LB007979	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-29 1.1-1.2	SE102938.077	LB007979	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-29 2.0-2.1	SE102938.078	LB007979	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-30 0.0-0.1	SE102938.079	LB007979	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-30 1.0-1.1	SE102938.080	LB007979	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-30 2.0-2.1	SE102938.081	LB007980	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-31 0.0-0.1	SE102938.082	LB007980						
			27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-31 1.0-1.1 TP-31 2.0-2.1	SE102938.083	LB007980 LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
	SE102938.084		27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-32 0.0-0.1	SE102938.085	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-32 0.6-0.7	SE102938.086	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-32 1.5-1.6	SE102938.087	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-33 0.0-0.1	SE102938.088	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-33 1.0-1.1	SE102938.089	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-33 2.0-2.1	SE102938.090	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-34 0.0-0.1	SE102938.091	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-34 0.5-0.6	SE102938.092	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-34 1.5-1.6	SE102938.093	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-35 0.0-0.1	SE102938.094	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-35 1.0-1.1	SE102938.095	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-35 2.0-2.1	SE102938.096	LB007980	27 Oct 2011	31 Oct 2011	10 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-36 0.0-0.1	SE102938.097	LB007980	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-36 1.0-1.1	SE102938.098	LB007980	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011
TP-36 2.0-2.1	SE102938.099	LB007980	28 Oct 2011	31 Oct 2011	11 Nov 2011	02 Nov 2011	07 Nov 2011	03 Nov 2011

11/11/2011 Page 5 of 17

HOLDING TIMES -

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field sampling guide for containers and holding time" (Ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1: 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

The extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and Analysis dates are shown in Green when within suggested criteria and in **Bold** with an appended dagger symbol and **Red†** when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample Number	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
pH in soil (1:5) Method: M	IE-(AU)-[ENV]AN101							
ΓP-1 0.0-0.1	SE102938.001	LB008007	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
ΓP-1 1.0-1.1	SE102938.002	LB008007	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
ΓP-1 2.0-2.1	SE102938.003	LB008007	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
ΓP-2 0.0-0.1	SE102938.004	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
TP-2 0.5-0.6	SE102938.005	LB008007	28 Oct 2011	31 Oct 2011				01 Nov 201
ΓP-2 1.5-1.6	SE102938.005	LB008007			04 Nov 2011	01 Nov 2011	03 Nov 2011	
ΓΡ-4 0.0-0.1			28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
	SE102938.007	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
ΓP-4 1.0-1.1	SE102938.008	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
ΓP-4 2.0-2.1	SE102938.009	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
ΓP-5 0.0-0.1	SE102938.010	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-5 0.5-0.6	SE102938.011	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
ΓP-5 1.5-1.6	SE102938.012	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
TP-6 0.0-0.1	SE102938.013	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
ΓP-6 0.5-0.6	SE102938.014	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
ГР-6 1.5-1.6	SE102938.015	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
TP-7 0.0-0.1	SE102938.016	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
TP-7 1.0-1.1	SE102938.017	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
TP-7 2.0-2.1	SE102938.018	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-8 0.0-0.1	SE102938.019	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-8 1.0-1.1	SE102938.020	LB008007	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-8 2.0-2.1	SE102938.021	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-9 0.0-0.1	SE102938.022	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-9 0.6-0.7	SE102938.023	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-9 1.5-1.6	SE102938.024	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-10 0.0-0.1	SE102938.025	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-10 1.0-1.1	SE102938.026	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-10 2.0-2.1	SE102938.027	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
TP-11 0.0-0.1	SE102938.028	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
ΓP-11 0.6-0.7	SE102938.029	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
TP-11 1.5-1.6	SE102938.030	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-12 0.0-0.1	SE102938.031	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-12 1.0-1.1	SE102938.032	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-12 2.0-2.1	SE102938.033	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
TP-13 0.0-0.1	SE102938.034	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-13 1.0-1.1	SE102938.035	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
ΓP-13 2.0-2.1	SE102938.035	LB008008	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-13 2.0-2.1	SE102938.037				03 Nov 2011		03 Nov 2011	
		LB008008	27 Oct 2011	31 Oct 2011		01 Nov 2011		01 Nov 201
P-14 0.6-0.7	SE102938.038	LB008008	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-14 1.7-1.8	SE102938.039	LB008008	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-15 0.0-0.1	SE102938.040	LB008008	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-15 1.0-1.1	SE102938.041	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-15 2.0-2.1	SE102938.042	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-16 0.0-0.1	SE102938.043	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-16 0.6-0.7	SE102938.044	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-16 1.5-1.6	SE102938.045	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-18 0.0-0.1	SE102938.046	LB008010	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-18 1.0-1.1	SE102938.047	LB008010	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-18 2.0-2.1	SE102938.048	LB008010	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
P-19 0.0-0.1	SE102938.049	LB008010	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201
TP-19 0.5-0.6	SE102938.050	LB008010	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 201

11/11/2011 Page 6 of 17

HOLDING TIMES -

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field sampling guide for containers and holding time" (Ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1: 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

The extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and Analysis dates are shown in Green when within suggested criteria and in **Bold** with an appended dagger symbol and **Red†** when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample Number	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
			_					
TP-19 1.5-1.6	SE102938.051	LB008010	28 Oct 2011	31 Oct 2011	04 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-21 0.0-0.1	SE102938.052	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-21 1.0-1.1	SE102938.053	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-21 2.0-2.1	SE102938.054	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-22 0.0-0.1	SE102938.055	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-22 1.0-1.1	SE102938.056	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-22 2.0-2.1	SE102938.057	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-23 0.0-0.1	SE102938.058	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-23 0.5-0.6	SE102938.059	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-23 1.5-1.6	SE102938.060	LB008010	27 Oct 2011	31 Oct 2011	03 Nov 2011	01 Nov 2011	03 Nov 2011	01 Nov 2011
TP-24 0.0-0.1	SE102938.061	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-24 1.5-1.6	SE102938.062	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-24 2.3-2.4	SE102938.063	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-25 0.0-0.1	SE102938.064	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-25 1.2-1.3	SE102938.065	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-25 2.0-2.1	SE102938.066	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-26 0.0-0.1	SE102938.067	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-26 0.5-0.6	SE102938.068	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-26 1.5-1.6	SE102938.069	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-27 0.0-0.1	SE102938.070	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-27 0.5-0.6	SE102938.071	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-27 1.5-1.6	SE102938.072	LB008011	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-28 0.0-0.1	SE102938.073	LB008011	28 Oct 2011	31 Oct 2011	04 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-28 0.5-0.6	SE102938.074	LB008011	28 Oct 2011	31 Oct 2011	04 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-28 1.5-1.6	SE102938.075	LB008011	28 Oct 2011	31 Oct 2011	04 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-29 0.0-0.1	SE102938.076	LB008011	28 Oct 2011	31 Oct 2011	04 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-29 1.1-1.2	SE102938.077	LB008011	28 Oct 2011	31 Oct 2011	04 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-29 2.0-2.1	SE102938.078	LB008011	28 Oct 2011	31 Oct 2011	04 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-30 0.0-0.1	SE102938.079	LB008011	28 Oct 2011	31 Oct 2011	04 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-30 1.0-1.1	SE102938.080	LB008011	28 Oct 2011	31 Oct 2011	04 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-30 2.0-2.1	SE102938.081	LB008013	28 Oct 2011	31 Oct 2011	04 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-31 0.0-0.1	SE102938.082	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-31 1.0-1.1	SE102938.083	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-31 2.0-2.1	SE102938.084	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-32 0.0-0.1	SE102938.085	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-32 0.6-0.7	SE102938.086	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-32 1.5-1.6	SE102938.087	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-33 0.0-0.1	SE102938.088	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-33 1.0-1.1	SE102938.089	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-33 2.0-2.1	SE102938.090	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-34 0.0-0.1	SE102938.091	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-34 0.5-0.6	SE102938.092	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-34 1.5-1.6	SE102938.093	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-35 0.0-0.1	SE102938.094	LB008013			03 Nov 2011		04 Nov 2011	01 Nov 2011
TP-35 0.0-0.1	SE102938.095	LB008013	27 Oct 2011	31 Oct 2011		02 Nov 2011		
			27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-35 2.0-2.1	SE102938.096	LB008013	27 Oct 2011	31 Oct 2011	03 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-36 0.0-0.1	SE102938.097	LB008013	28 Oct 2011	31 Oct 2011	04 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011
TP-36 1.0-1.1	SE102938.098	LB008013	28 Oct 2011	31 Oct 2011	04 Nov 2011	02 Nov 2011	04 Nov 2011	01 Nov 2011

11/11/2011 Page 7 of 17

HOLDING TIMES -

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field sampling guide for containers and holding time" (Ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1: 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

The extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and Analysis dates are shown in Green when within suggested criteria and in **Bold** with an appended dagger symbol and **Red†** when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample Number	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Soluble Anions in Soil by Ion	Chromatography Method: Mi	E-(AU)-[ENV]AN24	15					
P-1 0.0-0.1	SE102938.001	LB007933	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
TP-2 0.5-0.6	SE102938.005	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-4 2.0-2.1	SE102938.009	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-5 1.5-1.6	SE102938.012	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-6 0.0-0.1	SE102938.013	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
P-7 1.0-1.1	SE102938.017	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-8 2.0-2.1	SE102938.021	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-9 0.0-0.1	SE102938.022	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-10 1.0-1.1	SE102938.026	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-11 0.6-0.7	SE102938.029	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-12 2.0-2.1	SE102938.033	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-13 2.0-2.1	SE102938.036	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-14 0.0-0.1	SE102938.037	LB007933	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
P-15 1.0-1.1	SE102938.041	LB007933	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
P-16 0.6-0.7	SE102938.044	LB007933	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
TP-18 2.0-2.1	SE102938.048	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-19 0.0-0.1	SE102938.049	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-19 1.5-1.6	SE102938.051	LB007933	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-21 1.0-1.1	SE102938.053	LB007933	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
TP-22 1.0-1.1	SE102938.056	LB007933	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
TP-23 0.5-0.6	SE102938.059	LB007934	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
TP-24 2.3-2.4	SE102938.063	LB007934	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
TP-25 1.2-1.3	SE102938.065	LB007934	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
TP-26 0.5-0.6	SE102938.068	LB007934	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
TP-27 1.5-1.6	SE102938.072	LB007934	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
TP-28 0.0-0.1	SE102938.073	LB007934	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-29 1.1-1.2	SE102938.077	LB007934	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-30 1.0-1.1	SE102938.080	LB007934	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201
TP-31 0.0-0.1	SE102938.082	LB007934	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
P-32 0.6-0.7	SE102938.086	LB007934	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
P-33 0.0-0.1	SE102938.088	LB007934	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
TP-34 1.5-1.6	SE102938.093	LB007934	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
P-35 1.0-1.1	SE102938.095	LB007934	27 Oct 2011	31 Oct 2011	24 Nov 2011	01 Nov 2011	24 Nov 2011	07 Nov 201
P-36 0.0-0.1	SE102938.097	LB007934	28 Oct 2011	31 Oct 2011	25 Nov 2011	01 Nov 2011	25 Nov 2011	07 Nov 201

11/11/2011 Page 8 of 17

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red† when outside suggested criteria.

No Surrogates were required for this job.

11/11/2011 Page 9 of 17

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, which is typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red† when outside suggested criteria.

Parameter	Units	Control LOR	BLK MB
Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106 LB008001.001			
Conductivity	μS/cm	1	<1
Total Dissolved Solids (by calculation)	mg/kg	5	<5
LB008002.001			
Conductivity	μS/cm	1	<1
Total Dissolved Solids (by calculation)	mg/kg	5	<5
LB008003.001			
Conductivity	μS/cm	1	<1
Total Dissolved Solids (by calculation)	mg/kg	5	<5
LB008004.001			
Conductivity	μS/cm	1	<1
Total Dissolved Solids (by calculation)	mg/kg	5	<5
LB008006.001			
Conductivity	μS/cm	1	<1
Total Dissolved Solids (by calculation)	mg/kg	5	<5
Soluble Anions in Soil by Ion Chromatography Method: ME-(AU)-[ENV]AN245 LB007933.001			
Chloride	mg/kg	0.25	<0.25
Sulphate	mg/kg	0.5	<0.5
LB007933.027			
Chloride	mg/kg	0.25	<0.25
Sulphate	mg/kg	0.5	<0.5
LB007934.001			
Chloride	mg/kg	0.25	<0.25
Sulphate	mg/kg	0.5	<0.5

11/11/2011 Page 10 of 17

DUPLICATES

Duplicates are calculated as relative percent difference (RPD) using the formula RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the maximum allowable RPD criteria and can be graphically represented by a curve calculated from the statistical detection limit and limiting repeatability using the formula: MaxAllowableDifference = 100 x StatisticalDetectionLimit / Mean + LimitingRepeatability

Where the MaxAllowableDifference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red† when outside suggested criteria.

		ample Hame		52 102000.001 DOI			
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %	
Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106 LB008001.004							
Conductivity	μS/cm	1	310	340	30	7	
Conductivity (1:5 dry sample basis)	μS/cm	1	380	410	30	7	
Total Dissolved Solids (by calculation)	mg/kg	5	1100	1200	30	7	
pH in soil (1:5) Method: ME-(AU)-[ENV]AN101							
pH in soil (1:5) Method: ME-(AU)-[ENV]AN101 LB008007.003 pH	pH Units	-	5.7	5.6	32	1	
LB008007.003	pH Units	-	5.7	5.6	32	1	
pH Soluble Anlons in Soll by Ion Chromatography Method: ME-(AU)-[ENV]AN245	pH Units	0.25	5.7	5.6	32	1	

Sample Name SE102938.001-DUP

mple Name		SE102938	.010-DUP	
LOR	Original Result	Duplicate Result	Criteria %	RPD %
1	78	66	31	16
1	91	77	31	16
5	270	230	32	16
	1 1	1 78 1 91	1 78 66 1 91 77	1 78 66 31 1 91 77 31

	Sá	ample Name	Name SE102938.021-DUP				
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %	
Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106 LB008002.004							
Conductivity	μS/cm	1	1400	1500	30	2	
Conductivity (1:5 dry sample basis)	μS/cm	1	1800	1800	30	2	
Total Dissolved Solids (by calculation)	mg/kg	5	5300	5400	30	2	
pH in soil (1:5) Method: ME-(AU)-[ENV]AN101 LB008008.003							
рН	pH Units	-	7.3	7.5	31	2	

11/11/2011 Page 11 of 17

SE102938.029-DUP

32

DUPLICATES

Duplicates are calculated as relative percent difference (RPD) using the formula RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the maximum allowable RPD criteria and can be graphically represented by a curve calculated from the statistical detection limit and limiting repeatability using the formula: MaxAllowableDifference = 100 x StatisticalDetectionLimit / Mean + LimitingRepeatability

Where the MaxAllowableDifference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red† when outside suggested criteria.

µS/cm

mg/kg

Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
Soluble Anions in Soil by Ion Chromatography Method: ME-(AU)-[ENV]AN245 LB007933.015						
Chloride	mg/kg	0.25	670	640	30	5
Sulphate	mg/kg	0.5	42	53	31	24
	S	ample Name		SE1029	38.031-DUP	
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106 LB008002.015						
Conductivity	μS/cm	1	96	92	31	4

pH in soil (1:5) Method: ME-(AU)-[ENV]AN101

Conductivity (1:5 dry sample basis)

Total Dissolved Solids (by calculation)

LB008008.014

pH	pH Units	-	5.6	5.7	32	1

5

110

330

100

310

	Sample Name			SE102938.	043-DUP		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %	
Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106 LB008003.006							
Conductivity	μS/cm	1	160	170	31	7	
Conductivity (1:5 dry sample basis)	μS/cm	1	170	180	31	7	
Total Dissolved Solids (by calculation)	mg/kg	5	510	540	31	7	

pH	pH Units	-	5.3	5.3	32	0

	Sa	mple Name	•	SE1029		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
Soluble Anions in Soil by Ion Chromatography Method: ME-(AU)-[ENV]AN245 LB007933.024						
Chloride	mg/kg	0.25	1500	1500	30	1
Sulphate	mg/kg	0.5	47	49	31	4

	Sa	mple Name	•	SE1029		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106 LB008003.016						
Conductivity	μS/cm	1	37	38	33	2
Conductivity (1:5 dry sample basis)	μS/cm	1	41	42	32	2
Total Dissolved Solids (by calculation)	mg/kg	5	120	130	34	2

11/11/2011 Page 12 of 17

DUPLICATES

Duplicates are calculated as relative percent difference (RPD) using the formula RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the maximum allowable RPD criteria and can be graphically represented by a curve calculated from the statistical detection limit and limiting repeatability using the formula: MaxAllowableDifference = 100 x StatisticalDetectionLimit / Mean + LimitingRepeatability

Where the MaxAllowableDifference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red† when outside suggested criteria.

	Sai	nple Name	•	SE1029	38.052-DUP	
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
pH in soil (1:5) Method: ME-(AU)-[ENV]AN101 LB008010.015						
pH	pH Units	-	6.1	6.0	32	0

	Sample Name			SE1029		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106 LB008004.004						
Conductivity	μS/cm	1	300	280	30	9
Conductivity (1:5 dry sample basis)	μS/cm	1	340	310	30	9
Total Dissolved Solids (by calculation)	mg/kg	5	1000	940	31	9
pH in soil (1:5) Method: ME-(AU)-[ENV]AN101 LB008011.003						
pH	pH Units	-	6.4	6.4	32	1

	Sample Name			SE102938.	071-DUP		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %	
Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106 LB008004.015							
Conductivity	μS/cm	1	520	460	30	12	
Conductivity (1:5 dry sample basis)	μS/cm	1	620	560	30	12	
Total Dissolved Solids (by calculation)	mg/kg	5	1900	1700	30	12	

	Sal	mple Name)	SE102938.072-DUP		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
Soluble Anions in Soil by Ion Chromatography Method: ME-(AU)-[ENV]AN245 LB007934.008						
Chloride	mg/kg	0.25	630	630	30	0
Sulphate	mg/kg	0.5	160	160	30	0

	Sample Name			SE1029		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106 LB008006.004						
Conductivity	μS/cm	1	53	54	32	3
Conductivity (1:5 dry sample basis)	μS/cm	1	63	65	32	3
Total Dissolved Solids (by calculation)	mg/kg	5	190	200	33	3

11/11/2011 Page 13 of 17

DUPLICATES

Duplicates are calculated as relative percent difference (RPD) using the formula RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the maximum allowable RPD criteria and can be graphically represented by a curve calculated from the statistical detection limit and limiting repeatability using the formula: MaxAllowableDifference = 100 x StatisticalDetectionLimit / Mean + LimitingRepeatability

Where the MaxAllowableDifference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red† when outside suggested criteria.

	Sample Name			SE10293		
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %
pH in soil (1:5) Method: ME-(AU)-[ENV]AN101 LB008013.003						
рН	pH Units	-	5.7	5.6	32	2

	Sample Name			SE102938.091-DUP			
Parameter	Units	LOR	Original Result	Duplicate Result	Criteria %	RPD %	
Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106 LB008006.015							
Conductivity	μS/cm	1	48	52	32	8	
Conductivity (1:5 dry sample basis)	μS/cm	1	52	56	32	8	
Total Dissolved Solids (by calculation)	mg/kg	5	160	170	33	8	
pH in soil (1:5) Method: ME-(AU)-[ENV]AN101 LB008013.014							
рН	pH Units	-	5.9	5.9	32	0	

11/11/2011 Page 14 of 17

LABORATORY CONTROL STANDARDS

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of the report.

Recovery is shown in Green when within suggested criteria or **Bold** with an appended dagger symbol and Red† when outside suggested criteria.

	Cont	rol		LCS	STD	
Parameter	Units	LOR	Result	Expected Result	Criteria %	Recovery %
Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN108 .B008001.002						
Conductivity	μS/cm	1	310	303	85 - 115	102
Total Dissolved Solids (by calculation)	mg/kg	5	930	909	85 - 115	102
B008002.002						
Conductivity	μS/cm	1	300	303	85 - 115	99
Total Dissolved Solids (by calculation)	mg/kg	5	900	909	85 - 115	99
B008003.002						
Conductivity	μS/cm	1	300	303	85 - 115	99
otal Dissolved Solids (by calculation)	mg/kg	5	900	909	85 - 115	99
B008004.002						
Conductivity	μS/cm	1	300	303	85 - 115	98
otal Dissolved Solids (by calculation)	mg/kg	5	890	909	85 - 115	98
B008006.002						
Conductivity	μS/cm	1	310	303	85 - 115	102
otal Dissolved Solids (by calculation)	mg/kg	5	930	909	85 - 115	102
DH in soil (1:5) Method: ME-(AU)-[ENV]AN101 B008007.001						
Н	pH Units	-	7.4	7.41	98 - 102	99
B008008.001						
pH	pH Units	-	7.4	7.41	98 - 102	100
.B008010.001						
oH .	pH Units	-	7.4	7.41	98 - 102	100
_B008011.001						
pH	pH Units	-	7.4	7.41	98 - 102	99
LB008013.001						
DH	pH Units	-	7.4	7.41	98 - 102	100
Soluble Anions in Soil by Ion Chromatography Method: ME-(AU)-[ENV]AN245 B007933.002						
Chloride	mg/kg	0.25	100	100	70 - 130	103
Sulphate	mg/kg	0.5	100	100	70 - 130	102
.B007933.028						
Chloride	mg/kg	0.25	100	100	70 - 130	102
Sulphate	mg/kg	0.5	100	100	70 - 130	102
B007934.002						
Chloride	mg/kg	0.25	100	100	70 - 130	102
Sulphate	mg/kg	0.5	100	100	70 - 130	102

11/11/2011 Page 15 of 17

QUALITY CONTROL - MATRIX SPIKES

Matrix spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of the report. Recovery is shown in Green when within suggested criteria or Bold with an appended dagger symbol and Red† when outside suggested criteria.

No Matrix Spikes were required for this job.

11/11/2011 Page 16 of 17

MATRIX SPIKE DUPLICATES

Matrix spike duplicates are calculated as relative percent difference using the formula RPD = | OriginalResult - ReplicateResult | x 100 / Mean The original result is the analyte concentration of the matrix spike and the replicate result is the analyte concentration of the matrix spike duplicate. The RPD is evaluated against the maximum allowable RPD criteria and can be graphically represented by a curve calculated from the statistical detection limit and limiting repeatability using the formula: MaxAllowableDifference = 100 x StatisticalDetectionLimit / Mean + LimitingRepeatability RPD is shown in Green when within suggested criteria or **Bold** with an appended dagger symbol and **Red†** when outside suggested criteria.

No Matrix Spike Duplicates were required for this job.

FOOTNOTES _

IS Insufficient sample for analysis. LNR Sample listed, but not received.

* NATA Accreditation does not cover this analysis.

^ Performed by outside laboratory.

LOR Limit of Reporting

Samples analysed as received.
Solid samples expressed on a dry weight basis.

QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance
NA The sample was not analysed for this analyte

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

11/11/2011 Page 17 of 17

LABORATORY REPORT COVERSHEET

Date: 10 November 2011

To: Geotechnique Pty Ltd

PO Box 880

PENRITH NSW 2750

Attention: Emged Rizkalla

Your Reference: Geotechnique 12576/1 Marsden Park (SE102938)

Laboratory Report No: CE74722

Samples Received: 1/11/2011 Samples / Quantity: 34 Soil

The above samples were received intact and analysed according to your written instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

Jon Dicker

Manager CAIRNS **Shey Goddard**

Speddard

Administration Manager

CAIRNS

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-1 SE102938-1 Soil 27/10/2011 TP-1 0-0.1	CE74722-2 SE102938-5 Soil 28/10/2011 TP-2 0.5-0.6	CE74722-3 SE102938-9 Soil 28/10/2011 TP-4 2.0-2.1
Date Extracted		7/11/2011	7/11/2011	7/11/2011
Date Analysed		10/11/2011	10/11/2011	10/11/2011
Sodium, Na	mg/kg	440	510	470
Sodium (meq%)	meq%	1.9	2.2	2.0
Exchangeable Sodium	%	20	24	25
Potassium, K	mg/kg	130	72	120
Potassium (meq%)	meq%	0.33	0.18	0.31
Exchangeable Potassium	%	3	2	4
Calcium, Ca	mg/kg	460	34	19
Calcium (meq%)	meq%	2.3	0.17	0.10
Exchangeable Calcium	%	24	2	1
Magnesium, Mg	mg/kg	620	800	710
Magnesium (meq%)	meq%	5.1	6.6	5.8
Exchangeable Magnesium	%	53	72	70
CEC	meq%	9.6	9.1	8.3

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-4 SE102938-12 Soil 28/10/2011 TP-5 1.5-1.6	CE74722-5 SE102938-13 Soil 28/10/2011 TP-6 0.0-0.1	CE74722-6 SE102938-17 Soil 28/10/2011 TP-7 1.0-1.1
Date Extracted		7/11/2011	7/11/2011	7/11/2011
Date Analysed		10/11/2011	10/11/2011	10/11/2011
Sodium, Na	mg/kg	750	45	75
Sodium (meq%)	meq%	3.3	0.20	0.33
Exchangeable Sodium	%	30	4	5
Potassium, K	mg/kg	210	270	150
Potassium (meq%)	meq%	0.54	0.69	0.38
Exchangeable Potassium	%	5	13	6
Calcium, Ca	mg/kg	16	150	570
Calcium (meq%)	meq%	0.08	0.75	2.8
Exchangeable Calcium	%	<1	15	46
Magnesium, Mg	mg/kg	850	430	320
Magnesium (meq%)	meq%	7.0	3.5	2.6
Exchangeable Magnesium	%	64	68	42
CEC	meq%	11	5.2	6.2

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-7 SE102938-21 Soil 28/10/2011 TP-8 2.0-2.1	CE74722-8 SE102938-22 Soil 28/10/2011 TP-9 0.0-0.1	CE74722-9 SE102938-26 Soil 28/10/2011 TP-10 1.0-1.1
Date Extracted		7/11/2011	7/11/2011	7/11/2011
Date Analysed		10/11/2011	10/11/2011	10/11/2011
Sodium, Na	mg/kg	1,800	220	590
Sodium (meq%)	meq%	7.8	0.96	2.6
Exchangeable Sodium	%	54	25	25
Potassium, K	mg/kg	150	65	140
Potassium (meq%)	meq%	0.38	0.17	0.36
Exchangeable Potassium	%	3	4	4
Calcium, Ca	mg/kg	220	130	120
Calcium (meq%)	meq%	1.1	0.65	0.60
Exchangeable Calcium	%	8	17	6
Magnesium, Mg	mg/kg	620	250	810
Magnesium (meq%)	meq%	5.1	2.0	6.6
Exchangeable Magnesium	%	35	54	65
CEC	meq%	14	3.8	10

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-10 SE102938-29 Soil 28/10/2011 TP-11 0.6-0.7	CE74722-11 SE102938-33 Soil 28/10/2011 TP-12 2.0-2.1	CE74722-12 SE102938-36 Soil 28/10/2011 TP-13 2.0-2.1
Date Extracted		7/11/2011	7/11/2011	7/11/2011
Date Analysed		10/11/2011	10/11/2011	10/11/2011
Sodium, Na	mg/kg	490	1,800	910
Sodium (meq%)	meq%	2.1	7.8	4.0
Exchangeable Sodium	%	15	41	31
Potassium, K	mg/kg	130	460	190
Potassium (meq%)	meq%	0.33	1.2	0.49
Exchangeable Potassium	%	2	6	4
Calcium, Ca	mg/kg	540	12	5
Calcium (meq%)	meq%	2.7	0.06	0.02
Exchangeable Calcium	%	19	<1	<1
Magnesium, Mg	mg/kg	1,100	1,200	1,000
Magnesium (meq%)	meq%	9.0	9.8	8.2
Exchangeable Magnesium	%	64	52	65
CEC	meq%	14	19	13

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-13 SE102938-37 Soil 27/10/2011 TP-14 0.0-0.1	CE74722-14 SE102938-41 Soil 27/10/2011 TP-15 1.0-1.1	CE74722-15 SE102938-44 Soil 27/10/2011 TP-16 0.6-0.7
Date Extracted		7/11/2011	7/11/2011	7/11/2011
Date Analysed		10/11/2011	10/11/2011	10/11/2011
Sodium, Na	mg/kg	470	550	920
Sodium (meq%)	meq%	2.0	2.4	4.0
Exchangeable Sodium	%	20	28	32
Potassium, K	mg/kg	190	170	91
Potassium (meq%)	meq%	0.49	0.43	0.23
Exchangeable Potassium	%	5	5	2
Calcium, Ca	mg/kg	390	28	96
Calcium (meq%)	meq%	1.9	0.14	0.48
Exchangeable Calcium	%	19	2	4
Magnesium, Mg	mg/kg	700	680	970
Magnesium (meq%)	meq%	5.7	5.6	7.9
Exchangeable Magnesium	%	56	65	63
CEC	meq%	10	8.5	13

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-16 SE102938-48 Soil 28/10/2011 TP-18 2.0-2.1	CE74722-17 SE102938-49 Soil 28/10/2011 TP-19 0.0-0.1	CE74722-18 SE102938-51 Soil 28/10/2011 TP-19 1.5-1.6
Date Extracted		7/11/2011	7/11/2011	7/11/2011
Date Analysed		10/11/2011	10/11/2011	10/11/2011
Sodium, Na	mg/kg	2,000	150	1,900
Sodium (meq%)	meq%	8.7	0.65	8.3
Exchangeable Sodium	%	39	12	43
Potassium, K	mg/kg	260	100	170
Potassium (meq%)	meq%	0.66	0.26	0.43
Exchangeable Potassium	%	3	5	2
Calcium, Ca	mg/kg	7	370	16
Calcium (meq%)	meq%	0.04	1.8	0.08
Exchangeable Calcium	%	<1	34	<1
Magnesium, Mg	mg/kg	1,600	330	1,300
Magnesium (meq%)	meq%	13	2.7	11
Exchangeable Magnesium	%	58	50	55
CEC	meq%	23	5.5	19

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-19 SE102938-53 Soil 27/10/2011 TP-21 1.0-1.1	CE74722-20 SE102938-56 Soil 27/10/2011 TP-22 1.0-1.1	CE74722-21 SE102938-59 Soil 27/10/2011 TP-23 0.5-0.6
Date Extracted		7/11/2011	7/11/2011	7/11/2011
Date Analysed		10/11/2011	10/11/2011	10/11/2011
Sodium, Na	mg/kg	1,900	1,700	610
Sodium (meq%)	meq%	8.3	7.4	2.6
Exchangeable Sodium	%	28	49	29
Potassium, K	mg/kg	150	210	93
Potassium (meq%)	meq%	0.38	0.54	0.24
Exchangeable Potassium	%	1	4	3
Calcium, Ca	mg/kg	97	10	45
Calcium (meq%)	meq%	0.49	0.05	0.23
Exchangeable Calcium	%	2	<1	2
Magnesium, Mg	mg/kg	2,500	870	720
Magnesium (meq%)	meq%	20	7.1	5.9
Exchangeable Magnesium	%	69	47	65
CEC	meq%	30	15	9.0

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-22 SE102938-63 Soil 27/10/2011 TP-24 2.3-2.4	CE74722-23 SE102938-65 Soil 27/10/2011 TP-25 1.2-1.3	CE74722-24 SE102938-68 Soil 27/10/2011 TP-26 0.5-0.6
Date Extracted		7/11/2011	7/11/2011	7/11/2011
Date Analysed		10/11/2011	10/11/2011	10/11/2011
Sodium, Na	mg/kg	1,900	2,800	250
Sodium (meq%)	meq%	8.3	12	1.1
Exchangeable Sodium	%	45	51	24
Potassium, K	mg/kg	260	140	47
Potassium (meq%)	meq%	0.66	0.36	0.12
Exchangeable Potassium	%	4	1	3
Calcium, Ca	mg/kg	48	170	16
Calcium (meq%)	meq%	0.24	0.85	0.08
Exchangeable Calcium	%	1	4	2
Magnesium, Mg	mg/kg	1,100	1,300	400
Magnesium (meq%)	meq%	9.0	11	3.3
Exchangeable Magnesium	%	50	44	72
CEC	meq%	18	24	4.6

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-25 SE102938-72 Soil 27/10/2011 TP-27 1.5-1.6	CE74722-26 SE102938-73 Soil 28/10/2011 TP-28 0.0-0.1	CE74722-27 SE102938-77 Soil 28/10/2011 TP-29 1.1-1.2
Date Extracted		7/11/2011	7/11/2011	7/11/2011
Date Analysed		10/11/2011	10/11/2011	10/11/2011
Sodium, Na	mg/kg	760	96	1,100
Sodium (meq%)	meq%	3.3	0.42	4.8
Exchangeable Sodium	%	35	14	39
Potassium, K	mg/kg	150	49	77
Potassium (meq%)	meq%	0.38	0.13	0.20
Exchangeable Potassium	%	4	4	2
Calcium, Ca	mg/kg	41	220	9
Calcium (meq%)	meq%	0.21	1.1	0.04
Exchangeable Calcium	%	2	36	<1
Magnesium, Mg	mg/kg	670	170	870
Magnesium (meq%)	meq%	5.5	1.4	7.1
Exchangeable Magnesium	%	59	46	59
CEC	meq%	9.4	3.0	12

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-28 SE102938-80 Soil 28/10/2011 TP-30 1.0-1.1	CE74722-29 SE102938-82 Soil 27/10/2011 TP-31 0.0-0.1	CE74722-30 SE102938-86 Soil 27/10/2011 TP-32 0.6-0.7
Date Extracted		7/11/2011	7/11/2011	7/11/2011
Date Analysed		10/11/2011	10/11/2011	10/11/2011
Sodium, Na	mg/kg	97	240	1,800
Sodium (meq%)	meq%	0.42	1.0	7.8
Exchangeable Sodium	%	7	14	52
Potassium, K	mg/kg	71	80	110
Potassium (meq%)	meq%	0.18	0.20	0.28
Exchangeable Potassium	%	3	3	2
Calcium, Ca	mg/kg	95	390	120
Calcium (meq%)	meq%	0.48	1.9	0.60
Exchangeable Calcium	%	8	26	4
Magnesium, Mg	mg/kg	630	520	780
Magnesium (meq%)	meq%	5.2	4.3	6.4
Exchangeable Magnesium	%	83	57	42
CEC	meq%	6.2	7.5	15

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-31 SE102938-88 Soil 27/10/2011 TP-33 0.0-0.1	CE74722-32 SE102938-93 Soil 27/10/2011 TP-34 1.5-1.6	CE74722-33 SE102938-95 Soil 27/10/2011 TP-35 1.0-1.1
Date Extracted		7/11/2011	7/11/2011	7/11/2011
Date Analysed		10/11/2011	10/11/2011	10/11/2011
Sodium, Na	mg/kg	1,300	900	2,300
Sodium (meq%)	meq%	5.6	3.9	10
Exchangeable Sodium	%	57	35	36
Potassium, K	mg/kg	60	140	310
Potassium (meq%)	meq%	0.15	0.36	0.79
Exchangeable Potassium	%	2	3	3
Calcium, Ca	mg/kg	120	5	13
Calcium (meq%)	meq%	0.60	0.03	0.07
Exchangeable Calcium	%	6	<1	<1
Magnesium, Mg	mg/kg	420	830	2,100
Magnesium (meq%)	meq%	3.4	6.8	17
Exchangeable Magnesium	%	35	61	61
CEC	meq%	9.8	11	28

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

Cation Exchange Capacity Suite Our Reference Your Reference Type of Sample Date Sampled Sample Description	Units	CE74722-34 SE102938-97 Soil 28/10/2011 TP-36 0.0-0.1
Date Extracted		7/11/2011
Date Analysed		10/11/2011
Sodium, Na	mg/kg	120
Sodium (meq%)	meq%	0.52
Exchangeable Sodium	%	10
Potassium, K	mg/kg	99
Potassium (meq%)	meq%	0.25
Exchangeable Potassium	%	5
Calcium, Ca	mg/kg	530
Calcium (meq%)	meq%	2.6
Exchangeable Calcium	%	51
Magnesium, Mg	mg/kg	220
Magnesium (meq%)	meq%	1.8
Exchangeable Magnesium	%	34
CEC	meq%	5.2

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

TEST PARAMETERS	UNITS	LOR	METHOD
Date Extracted			
Date Analysed			
Sodium, Na	mg/kg	2	AN122 / AN320 RL15D3
Sodium (meq%)	meq%	0.01	Calculation
Exchangeable Sodium	%	1	Calculation
Potassium, K	mg/kg	2	AN122 / AN320 RL15D3
Potassium (meq%)	meq%	0.01	Calculation
Exchangeable Potassium	%	1	Calculation
Calcium, Ca	mg/kg	2	AN122 / AN320 RL15D3
Calcium (meq%)	meq%	0.01	Calculation
Exchangeable Calcium	%	1	Calculation
Magnesium, Mg	mg/kg	2	AN122 / AN320 RL15D3
Magnesium (meq%)	meq%	0.01	Calculation
Exchangeable Magnesium	%	1	Calculation
CEC	meq%	0.01	AN122 / AN320 RL15D3

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

QUALITY CONTROL	UNITS	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Spike Recovery
				Sample Duplicate		
Date Extracted		-	CE74722-1	7/11/2011 7/11/2011	Batch Spike	-
Date Analysed		-	CE74722-1	10/11/2011 10/11/2011	Batch Spike	-
Sodium, Na	mg/kg	<2	CE74722-1	440 440 RPD: 0	Batch Spike	91%
Sodium (meq%)	meq%	-	CE74722-1	1.9 1.9 RPD: 0	Batch Spike	-
Exchangeable Sodium	%	-	CE74722-1	20 20 RPD: 0	Batch Spike	-
Potassium, K	mg/kg	<2	CE74722-1	130 130 RPD: 0	Batch Spike	91%
Potassium (meq%)	meq%	-	CE74722-1	0.33 0.33 RPD: 0	Batch Spike	-
Exchangeable Potassium	%	-	CE74722-1	3 3 RPD: 0	Batch Spike	-
Calcium, Ca	mg/kg	<2	CE74722-1	460 450 RPD: 2	Batch Spike	98%
Calcium (meq%)	meq%	-	CE74722-1	2.3 2.2 RPD: 4	Batch Spike	-
Exchangeable Calcium	%	-	CE74722-1	24 23 RPD: 4	Batch Spike	-
Magnesium, Mg	mg/kg	<2	CE74722-1	620 620 RPD: 0	Batch Spike	97%
Magnesium (meq%)	meq%	-	CE74722-1	5.1 5.1 RPD: 0	Batch Spike	-
Exchangeable Magnesium	%	-	CE74722-1	53 53 RPD: 0	Batch Spike	-
CEC	meq%	-	CE74722-1	9.6 9.6 RPD: 0	Batch Spike	-

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

QUALITY CONTROL	UNITS	Blank	Duplicate Sm#	Duplicate
				Sample Duplicate
Date Extracted		[NT]	CE74722-11	7/11/2011 7/11/2011
Date Analysed		[NT]	CE74722-11	10/11/2011 10/11/2011
Sodium, Na	mg/kg	[NT]	CE74722-11	1800 1800 RPD: 0
Sodium (meq%)	meq%	[NT]	CE74722-11	7.8 7.8 RPD: 0
Exchangeable Sodium	%	[NT]	CE74722-11	41 41 RPD: 0
Potassium, K	mg/kg	[NT]	CE74722-11	460 460 RPD: 0
Potassium (meq%)	meq%	[NT]	CE74722-11	1.2 1.2 RPD: 0
Exchangeable Potassium	%	[NT]	CE74722-11	6 6 RPD: 0
Calcium, Ca	mg/kg	[NT]	CE74722-11	12 12 RPD: 0
Calcium (meq%)	meq%	[NT]	CE74722-11	0.06 0.06 RPD: 0
Exchangeable Calcium	%	[NT]	CE74722-11	<1 <1
Magnesium, Mg	mg/kg	[NT]	CE74722-11	1200 1200 RPD: 0
Magnesium (meq%)	meq%	[NT]	CE74722-11	9.8 9.8 RPD: 0
Exchangeable Magnesium	%	[NT]	CE74722-11	52 52 RPD: 0
CEC	meq%	[NT]	CE74722-11	19 19 RPD: 0

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

QUALITY CONTROL	UNITS	Blank	Duplicate Sm#	Duplicate
				Sample Duplicate
Date Extracted		[NT]	CE74722-21	7/11/2011 7/11/2011
Date Analysed		[NT]	CE74722-21	10/11/2011 10/11/2011
Sodium, Na	mg/kg	[NT]	CE74722-21	610 600 RPD: 2
Sodium (meq%)	meq%	[NT]	CE74722-21	2.6 2.6 RPD: 0
Exchangeable Sodium	%	[NT]	CE74722-21	29 29 RPD: 0
Potassium, K	mg/kg	[NT]	CE74722-21	93 93 RPD: 0
Potassium (meq%)	meq%	[NT]	CE74722-21	0.24 0.24 RPD: 0
Exchangeable Potassium	%	[NT]	CE74722-21	3 3 RPD: 0
Calcium, Ca	mg/kg	[NT]	CE74722-21	45 45 RPD: 0
Calcium (meq%)	meq%	[NT]	CE74722-21	0.23 0.23 RPD: 0
Exchangeable Calcium	%	[NT]	CE74722-21	2 3 RPD: 40
Magnesium, Mg	mg/kg	[NT]	CE74722-21	720 710 RPD: 1
Magnesium (meq%)	meq%	[NT]	CE74722-21	5.9 5.8 RPD: 2
Exchangeable Magnesium	%	[NT]	CE74722-21	65 65 RPD: 0
CEC	meq%	[NT]	CE74722-21	9.0 8.9 RPD: 1

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938)Laboratory Report No: CE74722

QUALITY CONTROL	UNITS	Blank	Duplicate Sm#	Duplicate
				Sample Duplicate
Date Extracted		[NT]	CE74722-31	7/11/2011 7/11/2011
Date Analysed		[NT]	CE74722-31	10/11/2011 10/11/2011
Sodium, Na	mg/kg	[NT]	CE74722-31	1300 1300 RPD: 0
Sodium (meq%)	meq%	[NT]	CE74722-31	5.6 5.6 RPD: 0
Exchangeable Sodium	%	[NT]	CE74722-31	57 57 RPD: 0
Potassium, K	mg/kg	[NT]	CE74722-31	60 60 RPD: 0
Potassium (meq%)	meq%	[NT]	CE74722-31	0.15 0.15 RPD: 0
Exchangeable Potassium	%	[NT]	CE74722-31	2 2 RPD: 0
Calcium, Ca	mg/kg	[NT]	CE74722-31	120 120 RPD: 0
Calcium (meq%)	meq%	[NT]	CE74722-31	0.60 0.60 RPD: 0
Exchangeable Calcium	%	[NT]	CE74722-31	6 6 RPD: 0
Magnesium, Mg	mg/kg	[NT]	CE74722-31	420 420 RPD: 0
Magnesium (meq%)	meq%	[NT]	CE74722-31	3.4 3.4 RPD: 0
Exchangeable Magnesium	%	[NT]	CE74722-31	35 35 RPD: 0
CEC	meq%	[NT]	CE74722-31	9.8 9.8 RPD: 0

PROJECT: Geotechnique 12576/1 Marsden Park (SE102938) Laboratory Report No: CE74722

LABORATORY REPORT

NOTES:

LOR - Limit of Reporting.

The significance of all reported results are defined by their analytical limit of reporting. Method from Rayment & Lyons - "Soil Chemical Methods - Australasia" 2011.

Analysis Date: Between 1/11/11 and 10/11/11

SGS Terms and Conditions are available at www.au.sgs.com

Geneva Legal Comment

This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

ISO 17025

Unless otherwise stated the results shown in this test report only refer to the sample(s) tested and such sample(s) are only retained for 60 days only. This document cannot be reproduced except in full, without prior approval of the Company.

G EOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

	Legend:	Emge	7		12	71	IP-5	9	00	7 TP-4	6	1-	4 TP-2	8	الا	1 TP-1		Location		PH: 02 8594 0400 ATTN: MS ANGELA	33 MADD ALEXANI	TO: SGS ENV	Lemko Place PENRITH NSW 2750
ייסיים שייטים	Water sample place hottle	Emged Rizkalla	Name		1.5 - 1.6	0.5 - 0.6	0.0 - 0.1	2.0 - 2.1	1.0 - 1.1	0.0 - 0.1	1.5 - 1.6	0.5 - 0.6	0.0 - 0.1	2.0-2.1	1.0 -1.1	0.0 - 0.1		Depth (m)	Sampling details	3	ONIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015	SGS ENVIRONMENTAL SERVICES	750
				Relin			28/10/2011			28/10/2011			28/10/2011			27/10/2011		Date	ails	Ŋ		/ICES	
		FR	Signature	Relinquished by												7	×	Time					PENR
	usg L		O		DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	vV	Soil	Sample type	FAX: 0			P O Box 880 PENRITH NSW 2751
	Jndisturbed																	Water	type	02 8594 0499			ox 880 2751
	Undisturbed soil sample (glass jar)	31.10.11	Date		<	<	<		<	<	V	~	<	~	V	*	EC			19			Fax: (02) 4722 6161 email: info@geotech.com.au
	DSP	(1)			<	. <	<		<	<	<	<	<	<	<	<	рH			Project N		Sampling By:	161 tech.com.au
	Disturbed	uba	Name		<			<				<				<	Sulphate	76	O	ject Manager:		g By:	
	Disturbed soil sample (small plastic bag)				<			<				<				~	Chloride	ouito ici	Possille required by:	R		AN	
	(small plas	2	b		<			<				<				~	ESP	dailea					
	tic bag)	- W	Signature	Received by							0	F7 .		Dac	th.	Ву	Vec.	νy.	by:	Location:	Project:	Job No:	
	* Purge & Trap		Ф	y						0	1	-	DOOR Face	UI SOIC			aived 31			Northwest Gr	Marsden Park Precinct	125/6/1	Page
		3111014	Da Da							512,012		CON JOHN SHELL YES	300	5)	200	0)4			Northwest Growth Centre, Marsden Park	k Precinct		1 of
	[®] mole H ⁺ /tonne	7.2	pate		YES	YES	YES	YES	YES	SEY YES	YES	WES YES	YES	YES	YES	YES	SAMPLE			arsden Park			9

G EOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

	Legend: WG		٥	W.	立に	28	29	2	26	0	ठॅठ	17	S.	5	-	V				PH:		Т0:	Lemko Place PENRITH N
	Water sample, glass bottle		Name				TP-9			TP-8			TP-7			TP-6		Location	6	02 8594 0400 MS ANGELA MAMALICOS	33 MADDOX STREET ALEXANDRIA NSW 2015	SGS ENVIRONMENTAL SERVICES UNIT 16	PENRITH NSW 2750
	lass bottle				1.5 - 1.6	0.6-0.7	0.0 - 0.1	2.0 - 2.1	1.0 - 1.1	0.0 - 0.1	2.0-2.1	1.0-1.1	0.0 - 0.1	1.5-1.6	0.5-0.6	0.0 - 0.1		Depth (m)	Sampling details	MALICOS	REET ISW 2015	MENTAL SERVI	
				Relino			28/10/2011			28/10/2011			28/10/2011			28/10/2011		Date	S			CES	
			Signature	Relinquished by														Time					PENR
	USG		е		DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP		Soil	Sample type	FAX: 0			P O Box 880 PENRITH NSW 2751
!	Undisturbe																	Water	type	02 8594 0499			P O Box 880 NSW 2751
District on il comple (alone int)	Undisturbed soil sample (glass jar)		Date		<	<	<	<		<	×	~	~	×	V	<	EC			99			Fax: (02) 4722 6161 email: info@geotech.com.au
<	DSP				<	<	<	<		<	<	<	<	<	<	v.	рH			Project Manager:		Sampling By:	l61 ech.com.au
Tost roquirod	Disturbed	SUBG	Name				<	<				<				~	Sulphate	76	0	lanager:		g By:	
rod	Disturbed soil sample (small plastic bag)						<	<				<				4	Chloride	Nesults required by:	ellte ro	Ŗ		AN	
	(small pla	S.	*				<	<				<				<	ESP	quied					
	stic bag)	Der	Signature	Received by														νy.	- N	Location:	Project:	JOB NO:	
# Gentechnique Screen	* Purge & Trap		(G)	бу													¥.,			Northwest Growth Centre, Marsden Park	Marsden Park Precinct	1/3/6/1	Page
ue Screen		3111	,																	owth Centre	Precinct		2
	[®] mole H ⁺ /tonne	10/01	4																	e, Marsder			of
	onne	200	2		YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	SAMPLE			1 Park			9

G EOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700

WP V	Legend: WG V				Z	Sy,	3/2	83	22	2	89	20	28	K	36	3				Z.	PH: 0	Þ	ы С	TO: S	RIT
Water sample, plastic bottle	Water sample, glass bottle		Name				TP-13			TP-12			TP-11			TP-10		Location		MS ANGELA MAMALICOS	02 8594 0400	ALEXANDRIA NSW 2015	UNIT 16 33 MADDOX STREET	GS ENVIRONI	PENRITH NSW 2750
ass bottle	lass bottle				2.0-2.1	1.0-1.1	0.0 - 0.1	2.0 - 2.1	1.0 - 1.1	0.0 - 0.1	1.5-1.6	0.6-0.7	0.0 - 0.1	2.0-2.1	1.0-1.1	0.0 - 0.1		Depth (m)	Sampling details	MALICOS		VSW 2015	REET	SGS ENVIRONMENTAL SERVICES	
				Relin			28/10/2011			28/10/2011			28/10/2011			28/10/2011		Date	S					ICES	
			Signature	Relinquished by													\ 	Time							PENKI
USG Und					DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP	DSP		Soil W	Sample type		FAX: 028				TENRITH NSW 2/51
sturbed soil	disturbed s															1		Water	/pe		02 8594 0499				1/57
Disturbed soil sample (glass iar)	Undisturbed soil sample (glass jar)		Date		<	<	<	<	<	<	~	4	~	~	~	<	EC								email: info@geotech.com.au
<	DSP				<	<	<	<	<	<	<	<	<	~	V	<	P				Project Manager:			Sampling By:	lech.com.au
Test required	Disturbed	suba	Name		<			<				<			~		Sulphate	79	0		anager:			Ву:	
red	Disturbed soil sample (small plastic bag)				<			<				<			<		Chloride	Nesults required by:	viilte ro	S				AN	
	(small plas	S	h		<			<				<			<		ESP	dalle							
Ş	tic bag)	Mer	Signature	Received by															2		Location:		Project:	JOD NO:	
# Geotech	* Purge & Trap		(D	y																	Northwest		Marsden P	1/9/6/1	200
# Geotechnique Screen	Trap	31	>																		Northwest Growth Centre, Marsden Park		Marsden Park Precinct		
Ď	[@] mole H ⁺ /tonne	Moler	wate						-												itre, Marsde		•		2
/tonne	/tonne	200			YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	SAMPLE				n Park				